
Introduction

Shape transformations of epithelial sheets play a part in
various developmental morphogenetic processes and there is
thus considerable interest in elucidating the underlying mecha-
nisms (Ettensohn, 1985; Beloussov, 1998). These mechanisms
are based on the chemical and structural properties of the cells
that constitute a given epithelial sheet, however, the ultimate
genesis of the form of these sheets can only be understood by
complementing molecular studies of the control of morphogen-
esis with studies of their mechanical properties (Koehl, 1990;
Keller et al., 2003). Epithelial sheets often form a closed surface,
such as the monocellular wall of the blastula in the development
of an embryo. In the development of most embryos one of the key
events is the shape transformation from the nearly spherical
blastula into the invaginated gastrula. Because of its relative
simplicity, the developing embryo of the sea urchin has proved to
be a convenient system for studying the mechanics of such an
epithelial invagination (Gustafson and Wolpert, 1967; Kominami
and Takata, 2004). Several different mechanisms have been
proposed to explain the shape changes in the gastrulation pro-
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cess (Odell et al., 1980, Ettensohn, 1985, Davidson et al., 1995,
Verhas, 1997, Beloussov, 1998). Davidson et al. (1995) com-
pared and analyzed some of them and, in the results of their more
recent related measurements (Davidson et al., 1999), found
support for the apical extracellular matrix of the sea urchin playing
an important role, either as a mechanical structure for apicobasal
contraction, a force generating structure for gel swelling, or as a
substrate for cell traction.

In this work we focus on those aspects of the mechanics of the
blastula wall that are related to its laminar structure. The blastula
wall can be considered as a laminar structure because it involves
not only a central layer constituted by the monocellular epithelial
sheet but also a basolateral layer and several apical layers
(Spiegel et al., 1989). Lane et al. (1993), in their gel swelling
mechanism of epithelial invagination, proposed the lateral swell-
ing of the apical lamina, caused by the cell secretion of a
hygroscopic substance, to be the reason for the bending of the
epithelial sheet. According to this mechanism the bending of the
epithelial sheet is the consequence of the differential change of
the areas of different apical layers. An analogous bilayer couple
mechanism has been invoked to explain the effect of membrane
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intercalating agents on shape transformations of red blood cells
(Sheetz and Singer, 1974). A corresponding theoretical approach
was developed and used to analyze the shape behavior of
phospholipid vesicles and red blood cells (Svetina and Zeks,
1989, 1996). Several results of this analysis are independent of
the detailed structure and composition of different laminar mem-
branes and are therefore valid for any other vesicular object that
exhibits a laminar envelope and encloses a liquid-like interior,
including blastula. The notion that some intermediate shapes in
the blastula - gastrula transition appear to be very similar to those
observed with simple vesicular systems, such as phospholipid
vesicles and red blood cells, already prompted the idea of the
bilayer couple mechanism as being involved in establishing
certain developmental shapes (Svetina and Zeks, 1991).

It is the purpose of this work to examine further whether some
of the general conclusions obtained by analyses of the shape
behavior of systems with simple laminar membranes can also
contribute to understanding the shape behavior of closed epithe-
lial sheets, in particular of the epithelial invagination in the primary
step of gastrulation. We first summarize some known facts about
the mechanical properties and shape behavior of simple vesicular
objects that can be described in terms of the generalized bilayer
couple model (Heinrich et al., 1993), frequently termed the area
difference elasticity model (Miao et al., 1994). A criterion for the
formation of a stable spherical shape of a vesicular object will be
demonstrated. Conditions are determined under which the ve-
sicular object can be transformed, in a continuous manner, from
a sphere into an invaginated shape and a process which could
give rise to such a continuous shape transformation will be
presented.

We do not attempt here to give a detailed explanation of the
gastrulation processes occurring in real embryos. The shape
behavior of simple vesicular objects that we shall describe has to
be viewed rather in the sense that it reveals the basic problems
that had to be solved in the course of evolution to allow monocel-
lular sheets to transform into invaginated shapes, which in multi-
cellular organisms then serve in the determination of their body
plan. It is plausible to assume that monocellular sheets were
originally formed from identical cells and that the contemporane-
ous processes of epithelial invagination are upgraded versions of
much simpler processes. This notion is in accord with the view
(Newman and Comper, 1990) that the evolutionary origin of many
morphogenetic processes may be understood in terms of the
action of physical mechanisms on cells and tissues. However, in
addition, the approach presented here could also contribute in
revealing whether some properties of contemporary multicellular
systems retain the gross features of simple vesicular systems and
in distinguishing these properties from those that are the result of
an evolutionary upgrading.

Theoretical background

Mechanical behavior of laminar membranes
Biological membranes, such as the red blood cell membrane,

membranes of more complex eukaryotic cells and also simple
phospholipid membranes, share the common feature of being
composed of thin layers. In phospholipid membranes these are
the two leaflets of their bilayer structure, in the red blood cell
membrane the two leaflets of its bilayer part together with, in an

effective manner, the spectrin based membrane skeleton or, in
the majority of eukaryotic cells, the actin rich sub-membrane
cortex. These laminar systems share the characteristic property
that the constituent layers are flexible but in tight contact, render-
ing their neutral surfaces to be equidistant over all the membrane.
Frequently, the layers are not firmly connected in a manner that
would prevent their lateral sliding over one another, with the
consequence that mechanical relaxations in their lateral direc-
tions occur autonomously for each layer.

Mechanically, each layer of a laminar membrane exhibits
bending and in-plane elasticities. The monolayers of the phos-
pholipid bilayer, for example, are in general in a liquid crystalline
state and therefore their in-plane elasticity can be described
solely in terms of area expansivity (compressibility) elastic
deformational mode. However, some layers of biological mem-
branes, such as the spectrin membrane skeleton of the red blood
cell, also exhibit shear elasticity. The blastula can also be consid-
ered as a vesicular object bounded by a laminar envelope. The
structure of the blastula wall indicates that, to a first approxima-
tion, the mechanical properties of its constituent layers are equiva-
lent to those of the layers of simple membranes. The central layer
of the blastula wall is a monocellular sheet composed of tightly
adhering epithelial cells. Cells behave, to some extent, as liquid
drops (Evans and Yeung, 1989) and are thus expected, in the
case of blastula shape transformations, to adapt their forms and
intercellular contacts in such a way that there is no significant
development of shear stresses within the layer. Other blastula
wall layers, such as apical lamina, are already by nature liquid-
like.

We describe now the independent deformational modes of
closed laminar membranes for the case in which all the mem-
brane layers involved are laterally liquid-like and homogeneous.
In a short summary we shall present the main results of the
analyses of the dependence of the elastic properties of the

Fig. 1. The dependence of the critical value of the ratio k kr c cr
/( )  on

the reduced volume v. The transition between the symmetric oblate and
the cup shapes at a given v is continuous only if the ratio kr / kc  is larger
than the corresponding critical value. The critical ratio k kr c cr

/( )  is propor-
tional to the derivative of the bending energy (Eq. 2 by taking C0 = 0)
against the integral vesicle curvature C , taken on the cup shape side of
the point of the symmetry breaking transition from oblate discoid to cup
shapes (see Svetina and Zeks, 2002). The bending energy of correspond-
ing shapes was calculated numerically by the methods described in
Svetina and Zeks (1989) and Seifert et al. (1991).
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composite membrane on those of the constituent layers (Svetina
and Zeks, 1992 and references therein). The area expansivity
modulus of the multilayered membrane (K) is the sum of the area
expansivity moduli of all layers ( K=∑Ki, with Ki the area expansivity
modulus of the i -th layer). The area expansivity elastic term is

W
K

A
A AA = −( )1

2 0
0

2

, (1)

where A is the area and A0 the equilibrium area of the neutral
surface of the membrane. Each layer may also independently
exhibit bending elasticity characterized by the bending constant
kci and the spontaneous curvature C0i . Because at a given point
on the membrane all layers have equal principal curvatures C1
and C2, the bending energy of the whole membrane is the integral
over the membrane area
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1

2 1 2 0

2
, (2)

where the bending constant of the membrane, kc is the sum of the

bending constants of all layers (kc=∑kci) and the membrane
spontaneous curvature, C0, is the sum of the spontaneous curva-

tures of all layers (C0=∑C0i).
Laminar membranes exhibit one more independent

deformational mode, termed the non-local bending. It is related to
the fact that, for a given shape of the vesicular object, the integral
of the sum of the two principal curvatures over the whole mem-
brane area,

C C C dA= +( )∫ 1 2 , (3)

is not necessarily equal to its value ( C0 ) that would correspond
to the shape at which the sum of area expansivity energies of all
layers is minimal. Hereafter we shall denote the variable C  to be
the integral vesicle curvature and the parameter C0  the equilib-
rium integral vesicle curvature. The non-local bending energy
arises because, at a given shape of the closed laminar mem-
brane, all the layers, which in general have arbitrary equilibrium
areas, cannot relax laterally in an optimal manner. The non-local
bending energy, Wr, is given by
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where kr is the non-local bending constant. The constant kr
depends on the area expansivity moduli of the constituent layers
(Ki ) and the distances of their neutral surfaces from that of the
membrane (hi ),

kr=∑Kihi
2. (5)

The equilibrium integral vesicle curvature C0  for membranes with
more than two layers depends on the equilibrium areas of the
different membrane layers (A0,i ), on the distances of the neutral
surfaces of the layers from the neutral surface of the membrane
(hi ) and on the area expansivity moduli of the layers (Ki ). As an
example we present the expression for C0  of an envelope
composed of three layers. This expression is obtained by consid-
ering Eq. 21 in Svetina and Zeks (1992) which, for the layers i =
1,2 and 3 is:
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and the constraint (Eq. 16 in Svetina and Zeks, 1992),
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that defines the position of the neutral surface of the trilayer
membrane in terms of the two distances between the neutral
surfaces of neighboring layers.

Shapes of vesicular objects
The shape of a vesicular object can be determined as that at

which the expression for the elastic energy of its envelope has its
minimum (Canham, 1970, Deuling and Helfrich, 1976, Svetina
and Zeks, 1989, 1996). Convenient variables for characterizing
possible shapes of a vesicle with volume V and membrane area
A were found to be the reduced volume v (v = V/Vs where Vs  is the
volume of the sphere with area A) and the reduced integral vesicle
curvature c  ( c C Cs= / where Cs  = 8πRs is the integral vesicle
curvature of the sphere with area A = 4πRs

2). It is important to note
that stable vesicle shapes do not exist at all allowed pairs of values
of these two variables. The material constants of the system that
define which shapes are stable are the reduced spontaneous
curvature c0 (c0 = C0Rs), the reduced equilibrium integral vesicle
curvature c0  (defined as C Cs0 / ) and the ratio between the non-
local and local bending constants kr / kc .

Analysis of the shape behavior of simple vesicular objects,
such as phospholipid vesicles, revealed that there are properties
of these systems that are the sole consequence of the closeness
of the laminar boundary structure and that do not depend on
structural and compositional details of the composing layers. The
most significant general property of vesicular objects is that their
shapes belong to different classes distinguished by different
shape symmetries. For instance, the stomatocyte shapes and
similarly invaginated gastrula shapes, belong to the class of cup

Fig. 2. The region of stable spheres in the diagram

c k k c cr c0 02− ( ) −( )/  versus the reduced pressure difference

∆pR ks c
3 / . The stability condition (left side of Eq. 9 equal to zero) is

presented by the dashed line. The region of stable spheres is below this
line.
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shapes exhibiting a rotational symmetry (Svetina and Zeks,
1989). Another class of axisymmetric oblate shapes exhibits
equatorial mirror symmetry in addition to rotational symmetry –
the discoid shape of the red blood cell belongs to this class. By
continuously decreasing (e.g., at constant reduced volume) one
or both of the parameters c0 and c0 , the transition from the class
of symmetric oblate shapes to cup shapes can be either continu-
ous or discontinuous, depending on the reduced volume and on
the value of the ratio between the non-local and local bending
constants kr / kc . For continuous shape transformations the
variable c  changes continuously, whereas for discontinuous
transitions it exhibits a jump. Fig. 1 shows the dependence of the
critical value of the ratio k kr c cr

/( )  on the vesicle reduced volume.
The closer the vesicle volume is to that of a sphere, the larger is
this ratio, attaining an infinite value at v = 1. The occurrence of
discontinuous shape transformations can be interpreted on the
basis of the unique dependence of the membrane bending energy
(Eq. 2) on the variables v and c  (Svetina and Zeks, 2002).

Results

A criterion for the stability of spherical shapes
Under certain conditions the vesicular structures defined by

the energy terms Eqs. 1, 2 and 4 may attain the shape of a sphere.
An equation of state (a generalized Laplace law) for this sphere
was derived by considering Eqs. 1 and 2 (Ou-Yang and Helfrich,
1989). A further generalization of the equation of state, taking into
account also the non-local bending energy (Eq. 4), gives
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where ∆p is the pressure difference between the interior and
exterior of the vesicular object.

Ou-Yang and Helfrich (1989) derived, by considering Eqs. 1
and 2, the condition for the stability of the sphere. By including
Eq. 4, we have generalized this condition and, in terms of the
reduced variables, obtained for it the inequality
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The line that separates the region of stable spheres from the
region of sphere instabi l i ty in the phase diagram
c k k c cr c0 02− ( ) −( )/  versus ∆pR ks c

3 /  is shown in Fig. 2. A
spherical vesicular object can reach the instability line as the
result of decrease of pressure difference ∆p , increase of the
reduced spontaneous curvature c0, increase of the reduced
equilibrium integral vesicle curvature c0 , or of any combination
of these three parameters. It is also important to note that
shapes that form when the condition of sphere instability is
broken are axisymmetric and exhibit equatorial mirror symmetry.

A pathway for a continuous blastula-gastrula shape transfor-
mation

The shape transition of blastula into gastrula can be mimicked
by a possible pathway in the v - c  phase diagram through which

a spherical vesicular object transforms in a continuous manner
into an invaginated gastrula-like cup shape. The corresponding
shape transformations are assumed to follow the shape behav-
ior of vesicular objects with laminar envelopes that exhibit the
above described mechanical properties. The two variables of
the system, the reduced volume v and the reduced integral
vesicle curvature c , have to decrease their values from the
value 1 of the sphere to the values which correspond to the
invaginated shape of the gastrula. The reason for choosing a
continuous shape transformation process will be given in the
Discussion.

The variables v and c  are properties of the system that,
because of their different nature, have to be under the control
of different cellular processes. It is plausible to expect that they
change their values at different times. A possible scenario is
displayed in which the chosen shape transformation pathway is
presented in the c k k c cr c0 02− ( ) −( )/  versus ∆pR ks c

3 /  phase
diagram (Fig. 3A) and in the v versus c  phase diagram (Fig.
3B). The first process should lead initially to instability of the
spherical shape of the blastula and then to blastula flattening.
We assume that initially there is a finite pressure difference
between the blastula interior and exterior and that the first
process causes a slow and continuous decrease of this pres-
sure difference, while the reduced spontaneous curvature c0
and the reduced equilibrium value of the integral vesicle curva-
ture c0  remain constant. Accordingly, the process starts at
point A which is within the region of stable spheres and for
which the reduced integral vesicle curvature c  = 1. In accor-
dance with Eq. 8, the system then follows (see Fig. 3A) the line
parallel to the abscissa until the instability line is reached (point
B). As already stated, after crossing this line, the resulting
nonspherical shapes are oblate and exhibit equatorial mirror
symmetry. Making the arbitrary assumption that the pressure
difference decreases continuously until it becomes zero, the
reduced volume then decreases from point B in Fig. 3A to point
C. Fig. 3B shows this part of the shape transformation pathway
in the v - c  phase diagram. The shape transformations are also
illustrated by a sphere at the beginning (shape 1) and by two
increasingly flattened shapes (shapes 2 and 3). Shape 3 is the
last shape reached through the first shape sequence.

In order to achieve the final invaginated shape of the gas-
trula, the next process must involve a decrease of the variable
c . This can be accomplished by any mechanism that causes
the parameter c0  to decrease. In Fig. 3B the consequences of
this are shown for the shape transformations at constant re-
duced volume. At first the vesicular object still has equatorial
mirror symmetry, whereas its shape is flattening. At point D (see
Fig. 3A and shape 4 in Fig. 3B) the equatorial mirror symmetry
breaks down. At still lower values of c , invagination is initiated
(shape 5) which, by a further decrease of this variable, be-
comes deeper and deeper (shapes 6 to 8).

For the shape transformation at point D to be continuous,
the transformation pathway has to cross the line L in Fig. 3B
where there is a continuous, symmetry breaking transition
from the oblate shapes that involve equatorial mirror sym-
metry into shapes that lack this symmetry. It is crucial that
the ratio between the non-local and the local bending con-
stants is larger than its critical value for the chosen reduced
volume (see Fig. 1).
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Discussion

The problem of epithelial invagination has been analyzed on
the basis of the mechanical properties of laminar membranes. In
particular, it was assumed that the blastula wall can be described
as a laminar structure. It was also considered that the system is
laterally homogeneous, which would be so if blastula cells were
identical. In real systems, cells differentiate during the blastula
stage and this may cause the mechanical properties of the
blastula wall to be laterally heterogeneous. However, certain
general conclusions concerning the shape behavior of closed
objects with laminated envelopes that were revealed by studying
laterally homogeneous systems, e.g., the existence of shape
classes and the bilayer couple mechanism of shape transforma-
tions, remain valid also for more complex systems with laterally
heterogeneous envelopes. It is therefore an appropriate ap-
proach, to a first approximation, by which to study the shape
behavior of closed monocellular sheets in terms of the shape
behavior of simple vesicular objects that exhibit homogeneous
envelopes. The discussion will be divided into two parts. Firstly we
shall emphasize the general principles that govern the shape
behavior of vesicular objects and which could thus serve as a
framework for analysis of more complex monocellular systems.
Secondly, we shall discuss the specific problems relating to shape
transformations of closed monocellular sheets and attempt to
relate the results to the mechanical aspects of the process of
primary invagination in the blastula-gastrula transition of the sea
urchin.

Shapes of vesicular objects can be conveniently characterized
by two geometrical variables - the reduced volume (v) and the
reduced integral vesicle curvature ( c ). Accordingly, the invagi-
nated shape of the gastrula can be identified as one of the
possible natural shapes of a vesicular object and the sphere as
another. These two shapes correspond to two different sets of the
two shape variables. The study of the blastula – gastrula transition
can thus be centered on the question as to which mechanisms act
to change values of these two variables. In general, there are
different possible mechanisms. The reduced volume v can de-
crease from the value 1 of the sphere either at constant envelope
area, due to the loss of liquid enclosed by the blastula wall, or at
constant volume, due to the increase of the area of this wall.
Mechanisms to change the variable c  can be based on those that
affect the reduced spontaneous curvature c0 and the reduced
equilibrium integral vesicle curvature c0 , the latter for example by
differential changes of the equilibrium areas of different layers
that constitute the blastula wall (Eq. 6). The pathway along which
vesicle shapes transform from sphere to the invaginated gastrula
shape in the v - c  phase diagram is governed by the mechanical
properties of the blastula wall. As has been shown, the basic
elastic deformational modes needed to describe the shape be-
havior of closed laminar membranes are the area expansivity and
the local and non-local bending. These deformational modes
constitute the minimum necessary basis for the shape determina-
tion of closed laminar membranous systems. The same set of
deformational modes is therefore a natural choice for describing,
to a first approximation, the elastic behavior of the blastula wall.

One advantage of the suggested approach is that it makes it
possible to study the mechanism of epithelial invagination in
separate steps. There is a lower structural level at which an

Fig. 3. A possible continuous pathway of the blastula-gastrula shape

transformation. (A) The c k k c cr c0 02− ( ) −( )/  versus ∆pR ks c
3 /  phase

diagram. (B) The v versus c  phase diagram. The pathway in (A) is
denoted by thin lines. The dashed line is the instability line presented in
Fig. 2. The numbers indicate the points which correspond to the shapes
shown in (B). In (B), the line L is the line of the instability of the oblate
shapes exhibiting equatorial mirror symmetry. The results are presented
for a value of the ratio between the non-local and local bending constants
k kr c/ = 100  and for a reduced spontaneous curvature c0 = 2. For these
values of the ratio k kr c/ , the shape transformation from symmetric
oblate to cup shapes is continuous for the volumes for which line L is
plotted as a dashed line. The dotted part of line L indicates that at
corresponding reduced volumes, the transition from symmetric oblate to
cup shapes is discontinuous. Some intermediate shapes (2-7) of the
presented continuous shape transformation are also given. Shapes 1-3
are calculated at the value c0  = 1.054. Shapes 3 - 8 are calculated for the
constant value of the reduced volume  v = 0.95. The significance of the
points A, B, C, D and E is described in the text. The shapes are determined
by the methods described in Svetina and Zeks (1989) and Seifert et al.
(1991).

A

B
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understanding of the specific intracellular and intercellular inter-
actions should lead to derivation of the macroscopic elastic
constants of the blastula wall. At a certain intermediate level, it is
for instance possible to derive the elastic constants and the
spontaneous curvature of a monocellular sheet in terms of the
cortical tension of cells and the adhesion between them (Derganc,
2003). At a higher structural level, knowledge of the elastic
constants suffices for the determination of shapes.

Because a blastula is initially spherical while a gastrula is not,
the invagination process requires the blastula reduced volume to
decrease. Thus, in the course of gastrulation, the system has to
change in such a way as to cross the shape instability line shown
in Figs. 2 and 3A. In the example treated (Fig. 3) the instability line
was taken to be reached by decrease of the pressure difference
across the blastula envelope. This is not an unrealistic possibility
in view of the reported effects of the blastocoel osmotic pressure
on the gastrulation process (Takata and Kominami, 2001). How-
ever, as is evident from Fig. 2, the instability line can also be
reached by processes that would cause an increase of the
reduced spontaneous curvature c0 or of the reduced equilibrium
integral vesicle curvature c0 .

It has been predicted theoretically that in general the shape
obtained after crossing the sphere instability line belongs to the
class of axisymmetric shapes that also exhibit equatorial mirror
symmetry. Gastrula shapes do not possess the latter symmetry,
therefore in the course of subsequent shape transformations
there has to be a symmetry breaking transition from symmetric (in
our case oblate) shape to the asymmetric cup shape. As pre-
sented in Fig. 1, this transition can be continuous or discontinu-
ous, depending on the reduced volume and on the ratio between
the non-local and local bending constants. At reduced volumes
that correspond to the reduced volume of a typical gastrula,
phospholipid vesicles exhibit discontinuous shape transforma-
tions (Majhenc et al., 2004), whereas the gastrulation process
proceeds as a series of continuous shape transformations. The
difference in the behavior of these two vesicular objects must
reflect physical differences in their envelopes. Each shape trans-
formation, continuous or discontinuous, requires the rearrange-
ment of the basic constituents of the envelope – phospholipid
molecules in phospholipid membranes and cells in monocellular
sheets. It is obvious that lipid molecules can rearrange their
mutual positions much more easily than cells. It is anticipated that,
under the conditions of continuous shape transformation, there is
enough time for cells to adapt their mutual positions according to
the requirements of slowly changing shapes but that, in the case
of discontinuous shape transformations, such cell rearrange-
ments cannot be accomplished. The requirement for continuous
shape transformations poses some limitations on the mechanical
properties of the blastula wall, for instance it has to have a value
of the ratio k kr c/  that is at least one order of magnitude larger
than the typical value for simple lipid membranes of around 3
(Waugh et al., 1992, Majhenc et al., 2004).

Blastula, at their high reduced volumes v, can transform their
shape continuously from oblate axisymmetric that involves also
equatorial mirror symmetry, into oblate shape without the latter
symmetry, only if the ratio between the non-local and local
bending kr / kc  of its wall is sufficiently large (Fig. 1). The question
is whether epithelial sheets are adapted to fulfill this requirement.
We consider the available data on the behavior of the blastula of

the sea urchin and follow the idea about the role of apical layers
in the blastula-gastrula transition, supported by the accumulated
evidence supporting their indispensability for the occurrence of
gastrulation. According to the gel swelling mechanism (Lane et
al., 1993), the relevant layers of the sea urchin envelope are the
hyaline layer, the apical lamina and the monocellular sheet (Fig.
4). The hyaline layer (HL) consists of a network of hyaline and
other filaments. In general, filamentous networks are much less
resistant to bending than to area extension. We therefore assume
that the hyaline layer contributes to the envelope mechanics
mainly by its area expansivity energy term (Eq. 1) and that its
bending deformational mode can be neglected. The monocellular
layer (CL) is much thicker and therefore, in addition to the area
expansivity contribution, it also exhibits resistance to bending.
This layer is also the main candidate for nonzero spontaneous
curvature of the blastula wall. The apical lamina (AL) is the region
between the hyaline layer and the monocellular sheet and is filled
with protein gel. Its width appears to be under the control of the
length of microvilli that keep the hyaline layer at a certain distance
from the cell apical surfaces. When the gel is swollen by absorbed
water, one can thus suppose that the increase of the lamina
volume manifests itself in increased equilibrium area of the apical
lamina (A0,AL ). The mechanical properties of this lamina are
equivalent to the mechanical properties of a confined water layer.
Because water is practically incompressible, the effective area
expansivity modulus of the apical lamina is very large and its
bending modulus is practically zero.

The differences in the elastic behavior of different layers of the
sea urchin blastula wall can be used as the basis for elucidating
the mechanism of blastula invagination. The characteristic fea-
tures of the described trilayer model of the blastula wall can be
elucidated on the basis of Eq. 5 for the case where the apical
lamina has a much larger area expansivity modulus than the other
two layers. In such a case the neutral surface of the membrane
coincides with the neutral surface of the apical lamina at its
middle. The non-local bending constant can then be expressed as

kr = h K h KHL HL CL CL
2 2+ , (10)

where hHL  and hCL are the distances from the neutral surface of
the apical lamina to the neutral surfaces of the hyaline and
monocellular layers, respectively (Fig. 4). The corresponding
approximate equilibrium value of the integral vesicle curvature,
C0  (see Eq. 6), is conveniently expressed as

C
A A p A A

h ph
HL AL AL CL

HL CL
0

0 0 0 0=
−( ) + −( )

+
, , , ,

, (11)

where A0,HL, A0,AL and A0,CL are the equilibrium areas of the hyaline
layer, apical lamina and monocellular sheet, respectively and the
factor p is given by

p
h K

h K
CL CL

HL HL

= . (12)

Increase of the integral vesicle curvature C0  promotes evagi-
nation whereas its decrease promotes invagination. If swelling of
the apical lamina (i.e. increasing of A0,AL) is to cause the blastula
invagination, C0  has to decrease as A0,AL increases. This can
happen only if the value of the ratio p (Eq. 12) is sufficiently small.
The requirement for the described mechanism of blastula invagi-
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nation is thus that the area expansivity modulus of the monocel-
lular layer is sufficiently small compared to the area expansivity
modulus of the hyaline layer. This can be so, since experimental
evidence shows that the stiffness of the extracellular matrix is
much greater than that of the monocellular layer (Davidson et al.,
1999). Also, the neutral surface of the monocellular layer should
lie as close to the apical side of the cells as possible. It appears
that the latter requirement was achieved in the evolution of
monocellular epithelial sheets by positioning cell-cell junctions
close to the apical sides. The bending constant of the monocellu-
lar layer is, to a first approximation, proportional to the area
expansivity modulus KCL, so that with the small value of this
modulus it is also small. Taking into account these characteristics
of the blastula wall, it follows that the ratio between non-local and
local bending constants is given approximately by kr  / kc = KHLhHL

2/
kc,CL. The area expansivity modulus (KHL) can be estimated from
its elastic modulus EHL as KHL ≈ EHLdHL, where dHL is the thickness
of the hyaline layer. EHL was determined to be of the order of 104

Pa or more (Davidson et al., 1999) and dHL is approximately 1 µm.
Therefore, we have KHL ≥ 104 µJ/m2 and from kr / kc we can
estimate kc ≥ 10-16 J.

For interpretation of the blastula-gastrula shape transforma-
tion, a particularly important deformational mode is the non-local
bending mode and the crucial parameter of the corresponding
energy term is the equilibrium value of the integral vesicle curva-
ture C0 . As seen in Eq. 11, the value of this parameter depends
to a large extent on the equilibrium areas of the layers that
constitute the envelope. There are many physical and chemical
means by which cells can control the magnitudes of these areas.
The already discussed secretion of hygroscopic molecules into
the apical lamina in the case of gastrulation (Lane et al., 1993)
constitutes just one possible mechanism. It can be inferred that
the processes causing differential changes of the equilibrium
areas of membrane layers and consequent shape transforma-
tions are a suitable means for the transfer of chemical energy into
mechanical work needed to drive the folding of monocellular
sheets.

The elastic properties of the blastula wall described above
support the model of epithelial invagination proposed by Lane et
al. (1993). Our analysis implies that, for this mechanism to work,

it is essential that the area expansivity modulus of the monocel-
lular sheet be much smaller than the corresponding modulus of
the hyaline layer. In the same sense it can also be suggested that,
within the proposed trilayer model of the blastula wall,
exogastrulation (for this phenomenon see e.g. Hardin and Cheng,
1986) can be interpreted as the consequence of such changes in
the values of parameters in the numerator of Eq. 11 that cause its
second term to become larger than the first one.

In conclusion, this analysis provides a theoretical background
to the mechanism of epithelial invagination in sea urchin gastru-
lation, based on swelling the apical lamina and in this way
enlarging its area relative to the area of the hyaline layer (Lane et
al., 1993). The treatment of the trilayer model of the blastula wall
has indicated in particular the demands on the elastic properties
of the monocellular layer for this mechanism to be operative. In
this contribution we have especially emphasized the general
shape behavior of vesicular objects as a possible framework for
analysis of epithelial invagination. It is implied that the analysis of
different possible mechanisms of this process could benefit if
performed also from the perspective that some of the observed
features of the invagination process are the consequence of
general principles that shapes of vesicular objects obey.
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