Comparison of induction during development between *Xenopus tropicalis* and *Xenopus laevis*

AYAKO SEDOHARA¹, KEIKO SUZAWA² and MAKOTO ASASHIMA*,1,2,3

¹Department of Life Sciences (Biology), Graduate School of Art and Sciences, ²Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan and ³International Cooperative Research Project (ICORP)/Japan Science and Technology Agency (JST), Tokyo, Japan

ABSTRACT Several *in vitro* systems exist for the induction of animal caps using growth factors such as activin. In this paper, we compared the competence of activin-treated animal cap cells dissected from the late blastulae of *Xenopus tropicalis* and *Xenopus laevis*. The resultant tissue explants from both species differentiated into mesodermal and endodermal tissues in a dose-dependent manner. In addition, RT-PCR analysis revealed that organizer and mesoderm markers were expressed in a similar temporal and dose-dependent manner in tissues from both organisms. These results indicate that animal cap cells from *Xenopus tropicalis* have the same competence in response to activin as those from *Xenopus laevis*.

KEY WORDS: activin, chd, cer, Xbra, tissue differentiation, *Xenopus laevis*, *Xenopus tropicalis*

Introduction

Xenopus laevis has been widely used as an amphibian model in studies of early embryonic development (Ariizumi *et al.*, 2000, Sive *et al.*, 1998). The presumptive ectodermal region of the late blastulae of *Xenopus laevis* is composed of undifferentiated cells, known as the animal cap. These cells show competency in response to certain growth factors to differentiate into several different cell lineages. Many *in vitro* inductive systems using animal cap cells have been developed and various cell and tissue types have been induced using animal caps from *Xenopus laevis*, including heart, pronephros, pancreas, cartilage and eye (Ariizumi *et al.*, 2003, Asashima *et al.*, 2000a, Chan *et al.*, 1999, Furue *et al.*, 2002, Moriya *et al.*, 2000, Myoishi *et al.*, 2004, Osafune *et al.*, 2002, Sivanda *et al.*, 2003). In addition, animal cap assays have been used to investigate mechanisms of cell differentiation by treating the cells with various growth factors and to analyze gene function by injecting with various mRNAs.

Abbreviations used in this paper: RT-PCR, reverse transcriptase polymerase chain reaction; SS, Steinberg’s solution; WE, whole embryo.
dorsal mesoderm such as muscle. At high doses of activin, axial mesoderm tissues, such as notochord and endodermal cells were induced in the animal cap explants (Ariizumi et al., 1991). In addition, the animal cap cells treated with a high dose of activin could be induced to form head structures in conjugation and transplantation experiments, indicating that the animal cap cells treated with high doses of activin act as the head organizer (Ariizumi and Asashima, 1995, Ninomiya et al., 1999, Sedohara et al., 2002).

Xenopus laevis is an allotetraploid-derived species. For this reason, it has been hard to investigate the function of genes in early development using a conventional genetic approach, such as gene-knockout experiments. *Xenopus tropicalis*, a related species of *Xenopus laevis* is now also used as a model species in developmental biology studies (Amaya et al., 1998, Song et al., 2003), because *Xenopus tropicalis* is the diploid species and therefore more amenable to genetic studies (Smith et al., 1991). The genome of *Xenopus tropicalis* was sequenced recently to construct a genetic linkage map (Kochan et al., 2003). Previous studies have compared the developmental processes in *Xenopus laevis* and *Xenopus tropicalis* (Khokha et al., 2002, Sargent and Mohun, 2005, Shook et al., 2004). Fortunately, the same methods established to investigate early development in *Xenopus laevis*, including mRNA injection, whole-mount in situ hybridization and transplantation can also be used in the study of *Xenopus tropicalis* development (Khokha et al., 2002, Offield et al., 2000). In addition, many of the genes involved in early development in *Xenopus laevis* are expressed in the same regions and have the same functions in *Xenopus tropicalis* (D’Souza et al., 2003, Fisher et al., 2003, Fletcher et al., 2004, Haramoto et al., 2004, Knochel et al., 2001, Sekizaki et al., 2004).

However, there is little known about the competency of animal caps from *Xenopus tropicalis* in response to activin treatment. In this study, we compared competence in activin-treated animal cap cells dissected from late blastulae of *Xenopus tropicalis* and *Xenopus laevis*.

Results

Animal cap assay using late blastulae of Xenopus tropicalis

Schematic diagrams illustrating the animal cap assays performed in this study are shown in Figure 1A. Animal caps were dissected from late blastulae (stage 9). These animal cap ex-
Dose-dependent tissue differentiation in *Xenopus tropicalis* 387

Xenopus tropicalis (Fig. 1E). A chorion was removed from the blastulae of both species by fine forceps under a stereomicroscope. The animal pole of the blastulae was directed towards the top and then a bilateral side of the embryo was removed by tungsten needle (Fig. 1C, 1F). Yolk-rich cells at the vegetal pole of the late blastula were omitted from these embryos. The remainder of the animal cap explant was trimmed down to 0.5 mm x 0.5 mm (*Xenopus laevis*) or 0.25 x 0.25 mm (*Xenopus tropicalis*) (Fig. 1D, 1G). The animal cap explant was composed of 445 ± 14.0 or 448 ± 18.5 cells in *Xenopus laevis* or *Xenopus tropicalis*, respectively. These trimmed animal cap explants were used for all subsequent experiments.

The expression of early marker genes was induced by activin treatment in a dose-dependent manner in animal cap explants of *Xenopus tropicalis*. We investigated whether the dose-dependent activin effects observed for *Xenopus laevis* in previous studies were also observed in *Xenopus tropicalis*. For histological analysis, the resultant explants were cultured for 2 days at 25°C (*Xenopus tropicalis*) or 3 days at 20°C (*Xenopus laevis*) until sibling embryos reached stage 40 (Fig. 1A). The method of animal cap dissection is shown in Figure 1B-D (*Xenopus laevis*) and Figure 1E-G (*Xenopus tropicalis*). The diameter of late blastula of *Xenopus laevis* is 1.3-1.4 mm (Fig. 1B), compared to 0.6-0.8 mm for the late blastula of *Xenopus tropicalis* (Fig. 1E). A chorion was removed from the blastulae of both species by fine forceps under a stereomicroscope. The animal pole of the blastulae was directed towards the top and then a bilateral side of the embryo was removed by tungsten needle (Fig. 1C, 1F). Yolk-rich cells at the vegetal pole of the late blastula were omitted from these embryos. The remainder of the animal cap explant was trimmed down to 0.5 mm x 0.5 mm (*Xenopus laevis*) or 0.25 x 0.25 mm (*Xenopus tropicalis*) (Fig. 1D, G). The animal cap explant was composed of 445 ± 14.0 or 448 ± 18.5 cells in *Xenopus laevis* or *Xenopus tropicalis*, respectively. These trimmed animal cap explants were used for all subsequent experiments.

The expression of early marker genes was induced by activin treatment in a dose-dependent manner in animal cap explants of *Xenopus tropicalis*

We investigated whether the dose-dependent activin effects observed for *Xenopus laevis* in previous studies were also observed in *Xenopus tropicalis*. This experiment was carried out three times with the same result. (A) RT-PCR analyses of animal cap explants treated with various doses of activin (0, 0.5, 1, 10, 100 ng/ml) for 1 hour at 20°C and sampled immediately when sibling embryos reached stage 10.5. In this condition, the expression of organizer marker genes, such as chd and cer, could not be detected at any doses. The expression of the mesodermal marker gene Xbra was detected at both low and high doses of activin. (B) RT-PCR analyses of animal cap explants treated with various doses of activin (0, 0.5, 1, 10, 100 ng/ml) for 1 hour at 20°C and cultured for 5 hours until sibling embryos reached stage 12 at 20°C. The expression of the organizer genes chd and cer was induced at the high dose of activin treatment (lanes 4, 5). The high level of Xbra expression could be detected consecutively at every dose of activin treatment. (C, D) Quantitative analysis of gene expression for chordin, cerberus and Xbrachyury in activin-treated animal caps of *Xenopus laevis* (C) and *Xenopus tropicalis* (D) by real-time RT-PCR, relative to ODC expression. RNA samples were derived from animal caps treated with 0, 0.5, 1, 10, 100 ng/ml of activin for 1 hour at 20°C and then sampled immediately or 5 hours later at 20°C. The amount of cer expression was almost the same for the two species at high doses of activin for 5 hours. The expression levels of chd at 10 ng/ml of activin in *Xenopus tropicalis* was higher than that observed in *Xenopus laevis*, although the dose of activin for induction of gene expression was the same. The amount of Xbra expressed in *Xenopus laevis* was higher than that observed in *Xenopus tropicalis*, although Xbra expression was observed in 0.5 ng/ml activin in both species. chd, chordin; cer, cerberus; Xbra, Xbrachyury; WE, whole embryos.
apparent in animal cap cells dissected from *Xenopus tropicalis*. High doses of activin induced the expression of organizer marker genes, such as *chordin* (*chd*) and *cerberus* (*cer*), whereas lower doses of activin induced the mesodermal marker gene, *Xbrachyury* (*Xbra*) in animal cap explants from *Xenopus laevis* (Bouwmeester et al., 1996, Sasai et al., 1994, Smith, 1993, Smith et al., 1991). To do this, we analysed the expression of region-specific marker genes in activin-treated animal cap explants by RT-PCR and compared the gene expression in *Xenopus tropicalis* quantitatively with that in *Xenopus laevis*. The animal cap cells were dissected from the late blastulae of *Xenopus tropicalis* and *Xenopus laevis* and treated with various doses of activin (0, 0.5, 1, 10, 100 ng/ml) for 1 hour at 20°C. Non-treated animal cap explants were used as negative controls. The activin-treated animal cap explants were sampled immediately or cultured for 5 hours at 20°C until sibling embryos reached stage 12. Total RNA was extracted from the animal caps of both species, as described. ODC was used as an internal control for all experiments. The expression of *chd* and *cer* (organizer marker genes) could not be detected at any dose of activin in the treated explants sampled immediately; this was the case for both species (Fig. 2A, left and panels indicates results of *Xenopus laevis* and *Xenopus tropicalis*, respectively). The mesodermal marker gene, *Xbra* was expressed slightly at low and high doses (0.5-100 ng/ml) of activin in explants from *Xenopus laevis* and *Xenopus tropicalis*, respectively (Fig. 2A, lanes 2-5). In contrast, in the explants sampled after culturing for 5 hours, the expression of *chd* and *cer* was induced only with the high-dose (10 ng/ml, 100 ng/ml) activin treatments (Fig. 2B, lanes 4-5). In contrast, strong expression of *Xbra* could be detected at every dose (0.5-100 ng/ml) of activin treatment for both embryo species (Fig. 2B, lanes 2-5). This result indicates that the animal cap cells dissected from the blastulae of *Xenopus tropicalis* have competency following activin treatment and that the expression of organizer and mesodermal marker genes was induced by activin in a time- and dose-dependent manner.

We next analyzed the gene expression induced by activin treatment quantitatively using real-time PCR analysis. We measured the expression of a range of marker genes, including *chd*, *cer* and *Xbra* in activin-treated animal caps of

![Fig. 3. External views of activin-treated animal cap explants](image)

TABLE 2

<table>
<thead>
<tr>
<th>activin (ng/ml, 1 h)</th>
<th>0</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of experiments</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>notochord</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (14)</td>
<td>3 (20)</td>
</tr>
<tr>
<td>muscle</td>
<td>0 (0)</td>
<td>10 (71)</td>
<td>14 (100)</td>
<td>15 (100)</td>
</tr>
<tr>
<td>pronephros</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (21)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>mesenchyme</td>
<td>0 (0)</td>
<td>14 (100)</td>
<td>13 (93)</td>
<td>10 (67)</td>
</tr>
<tr>
<td>neural tissues</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>10 (71)</td>
<td>6 (40)</td>
</tr>
<tr>
<td>epidermis</td>
<td>0 (0)</td>
<td>14 (100)</td>
<td>14 (100)</td>
<td>14 (93)</td>
</tr>
<tr>
<td>endodermal cells</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (7)</td>
<td>4 (27)</td>
</tr>
<tr>
<td>atypical epidermis</td>
<td>17 (100)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Numbers in brackets indicate the percentage of tissue differentiation respectively.

TABLE 3

<table>
<thead>
<tr>
<th>activin (ng/ml, 1 h)</th>
<th>0</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of experiments</td>
<td>16</td>
<td>26</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>notochord</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>8 (32)</td>
<td>7 (30)</td>
</tr>
<tr>
<td>muscle</td>
<td>0 (0)</td>
<td>7 (27)</td>
<td>24 (96)</td>
<td>5 (22)</td>
</tr>
<tr>
<td>pronephros</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>mesenchyme</td>
<td>0 (0)</td>
<td>17 (65)</td>
<td>8 (32)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>neural tissues</td>
<td>0 (0)</td>
<td>5 (19)</td>
<td>17 (76)</td>
<td>18 (78)</td>
</tr>
<tr>
<td>epidermis</td>
<td>0 (0)</td>
<td>19 (73)</td>
<td>24 (96)</td>
<td>4 (17)</td>
</tr>
<tr>
<td>endodermal cells</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (12)</td>
<td>21 (91)</td>
</tr>
<tr>
<td>atypical epidermis</td>
<td>16 (100)</td>
<td>14 (54)</td>
<td>3 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Numbers in brackets indicate the percentage of tissue differentiation respectively.
Dose-dependent tissue differentiation in Xenopus tropicalis

Xenopus laevis (Fig. 2C) and Xenopus tropicalis (Fig. 2D), relative to ODC expression. RNA samples were derived from animal caps treated with 0, 0.5, 1, 10, 100 ng/ml of activin for 1 hour and then sampled either immediately or 5 hours later at 20°C. In animal cap explants sampled immediately after activin treatment, no gene expression was detected in either species. After 5 hours of culturing, the expression of chd and cer was detected at 10 and 100 ng/ml of activin and Xbra expression was induced at 0.5-100 ng/ml of activin as described above (Fig. 2A, B). The amount of cer expression was similar at high doses of activin (10, 100 ng/ml) between the two species. The expression levels of chd at 10 ng/ml of activin in Xenopus tropicalis was higher than that observed in Xenopus laevis, although the dose of activin that induces the gene expression is the same. In particular, the expression of chd was 5 times higher at 10 ng/ml of activin in Xenopus tropicalis than at the same dose in Xenopus laevis. In contrast, the expression level of Xbra at 1-10 ng/ml of activin in Xenopus laevis was higher than that observed in Xenopus tropicalis and peaked at 1-10 ng/ml of activin in Xenopus laevis (there was no peak level of Xbra expression in Xenopus tropicalis). The quantitative analysis by real-time PCR therefore highlighted a difference in the gene expression levels activated by activin treatment between the two species, although the activin needed to induce the gene expression was the same.

Activin-treated animal cap explants from Xenopus tropicalis showed the same morphology as the explants from Xenopus laevis

To further investigate the competency of animal cap explants from Xenopus tropicalis and Xenopus laevis following activin treatment (0, 1, 10, 100 ng/ml) for 1 hour, we compared the morphology of respective explants cultured for 3 days at 20°C (Xenopus laevis, left panels) or 2 days at 25°C (Xenopus tropicalis, right panels) until sibling embryos reached stage 40 as described above. The surface of non-treated explants from both Xenopus laevis and Xenopus tropicalis was quite rough (Fig. 3A, E). The explants treated with 1 ng/ml of activin had an elongated shape and the appearance of a transparent balloon (Fig. 3B, F). In contrast, treatment with 100 ng/ml of activin induced the explants to become white, round blocks (Fig. 3D, H), while those treated with 10 ng/ml of activin assumed a shape that

Fig. 4. Histological analysis of animal cap explants treated with various doses of activin (A-I, Xenopus laevis; E-J, Xenopus tropicalis). (A,E) Non-treated animal cap explants. The explants differentiated into atypical epidermis. Mesodermal or endodermal tissues were not observed. (B,F) Animal cap explants were treated with 1 ng/ml activin. The explants contained mesenchyme. (C,G) 10 ng/ml activin. Muscle and neural tissues were observed in the explants. (D,H) 100 ng/ml activin. The axial mesoderm, notochord could be observed at high frequency. In addition, many explants contained an endodermal cell mass. ae, atypical epidermis; ce, coelomic epithelium; mes, mesenchyme; mus, muscle; not, notochord; nt, neural tissues. Scale bars in (A,E) indicate 100 µm. (I,J) Histogram of the tissue differentiation in the activin-treated animal cap cells of Xenopus tropicalis and Xenopus laevis from Tables 2 and 3. Red, mesodermal tissues; Blue, ectodermal tissues; Yellow, endodermal tissue and Gray, atypical epidermis.
was somewhere between that observed with low and high doses of activin (Fig. 3C, G). This result indicates that the *Xenopus tropicalis* explants treated with a graded dose of activin had the same gross morphology as those dissected from *Xenopus laevis* and similarly treated.

Activin-treated animal cap explants from Xenopus tropicalis differentiated into mesodermal and endodermal tissues in a dose-dependent manner

To investigate what tissue types were differentiated from the treated explants of *Xenopus tropicalis*, we performed histological analyses of the cultured explants described above. Non-treated animal cap explants from both *Xenopus laevis* and *Xenopus tropicalis* differentiated into atypical epidermis (Fig. 4A, E). Mesodermal or endodermal tissues could not be observed in the histological sections. On the other hand, mesenchyme and well-defined epidermis could be observed in the animal cap explants treated with 1 ng/ml of activin (Fig. 4B, F). Following treatment with 10 ng/ml of activin, the animal cap explants contained muscle and neural tissues (Fig. 4C, G). The axial mesoderm and notochord could be observed at high frequency in the explants treated with 100 ng/ml of activin (Fig. 4D, H). In addition, many explants contained an endodermal cell mass (Fig. 4D, H). Tables 2 and 3 summarize the results from the observation of tissue differentiation in the activin-treated animal cap cells of *Xenopus tropicalis* and *Xenopus laevis*. The *Xenopus tropicalis* explants differentiated into muscle much less frequently at the high and low doses of activin compared to *Xenopus laevis* and differentiated into neural tissues more frequently at all doses. The explants treated with 100 ng/ml of activin differentiated predominantly into endodermal tissues (91%) and neural tissues (78%) in *Xenopus tropicalis*, while endodermal tissues (93%), mesenchyme (67%) and muscle (100%) were predominantly induced in the explants from *Xenopus laevis* (Fig. 4I, J).

Discussion

Here, we aimed to perform animal cap assays from *Xenopus tropicalis* for histological analysis of *in vitro* inductive processes as reported in *Xenopus laevis*. This study demonstrated that animal cap cells dissected from late blastulae of *Xenopus tropicalis* have the same competence in response to activin as *Xenopus laevis* animal caps studied previously (Ariizumi et al., 1991, Green et al., 1997, Green et al., 1992). Organizer and mesoderm marker genes were expressed in the same temporal and dose-dependent pattern. Histological analysis also revealed that activin-treated animal cap explants of *Xenopus tropicalis* could differentiate into mesodermal and endodermal tissues in a dose-dependent manner. The animal cap cells from *Xenopus tropicalis* have responsiveness for various inductive signals such as activin and differentiate into various types of tissue *in vitro*, suggesting that *in vitro* systems of tissue induction using animal cap assays, as established in *Xenopus laevis*, may also be used to study *Xenopus tropicalis*.

This study also compared the responsiveness for activin treat-ment in animal cap cells from *Xenopus laevis* and *Xenopus tropicalis*. The qualitative analysis using RT-PCR presented here revealed no difference in the dose of activin required to induce gene expression between *Xenopus tropicalis* and *Xenopus laevis*, suggesting that the rate and speed of signal transduction may be regulated by a common system in *Xenopus laevis* and *Xenopus tropicalis*. Interestingly, the quantitative analysis using real-time RT-PCR revealed several differences in the levels of individual marker gene expression activated by activin treatment between the two species, indicating that transcriptional regulation might differ between these two species. The expression levels of the organizer marker, *cer* was the same in the two species, indicating that the induction of these genes might be conserved during development. Differences in the amounts and peaks of expression of other marker genes (*chd, cer, and Xbra*) between the two species suggested that there are different mechanisms to define expression levels in a germ layer- (tissue or position) or gene-specific manner between *Xenopus laevis* and *Xenopus tropicalis*.

Our results also revealed that activin-treated animal cap explants of *Xenopus tropicalis* can differentiate into mesodermal and endodermal tissues in a dose-dependent manner, as reported previously for *Xenopus laevis* (Ariizumi et al., 1991, Green et al., 1997, Green et al., 1992). This result indicates that there are common mechanisms of tissue differentiation, which are conserved among species. However, our results also indicated many differences in tissue differentiation between *Xenopus laevis* and *Xenopus tropicalis*. This may indicate that the threshold of responsiveness for activin treatment may be more highly defined in animal cap cells from *Xenopus tropicalis* than in those from *Xenopus laevis*. The main responsiveness for the activin dose did not differ significantly between the two species, although differences were observed in the ratios of tissues differentiated. It is thought that the cell differentiation is determined by which kind of signal the cell receives during normal development.

Our results support previous developmental comparisons of these two amphibians in demonstrating close similarities (Khokha et al., 2002, Sargent and Mohun, 2005, Shook et al., 2004). For example, many of the genes identified in *Xenopus laevis* are also expressed in the same regions and elicit homologous functions in *Xenopus tropicalis* (D’Souza et al., 2003, Fisher et al., 2003, Fletcher et al., 2004, Haramoto et al., 2004, Knochel et al., 2001, Sekizaki et al., 2004). However, many differences also exist in the developmental processes of these two closely related species. The embryos of *Xenopus tropicalis* develop more rapidly than those of *Xenopus laevis* and the embryos of *Xenopus tropicalis* are smaller than those of *Xenopus laevis* (Amaya et al., 1998, Khokha et al., 2002). In addition, the animal cap explants cultured from *Xenopus tropicalis* in this study were only half the size of those from *Xenopus laevis*. Further research is required to clarify whether similar signal transduction mechanisms exist in *Xenopus tropicalis* to those already defined in *Xenopus laevis* (Bourillot et al., 2002, Gurdon et al., 1999).

In summary, we described that animal cap cells of *Xenopus tropicalis* and *Xenopus laevis* display comparable competence for activin induction. This indicates the likelihood that the same method reported previously in *Xenopus laevis* can be used for tissue induction in *Xenopus tropicalis* (Ariizumi and Asashima, 1995, Ariizumi et al., 2003, Asashima et al., 2000a, Chan et al., 1999, Furue et al., 2002, Moriya et al., 2000, Myoishi et al., 2004, 2007, Sargent and Mohun, 2005).
Materials and Methods

Xenopus laevis and Xenopus tropicalis embryos

Xenopus tropicalis embryos were obtained by natural mating, where males and females were primed with 10 units of human chorionic gonadotropin (HCG; Gestron, Denka Seiyaku Co. Kawasaki Japan) at least 12 hours before a booster and incubated at 25°C. Both males and females were boosted with 100 units of HCG 4 hours before the frogs laid eggs. Xenopus tropicalis fertilized eggs were dejellied with 5% cysteine hydrochloride (Wako, Japan) (pH 7.8) in Steinberg’s solution (SS). Xenopus laevis embryos were obtained as described previously (Sedohara et al., 2002).

Embryo manipulation and conditioning of activin

The vitelline membrane was manually removed with fine forceps under a stereomicroscope. All operations were carried out under sterile conditions. Staging of the embryos of Xenopus tropicalis and Xenopus laevis was performed according to Nieuwkoop and Faber (Nieuwkoop and Faber, 1956). Human recombinant activin was dissolved at various concentrations (0, 0.5, 1, 10, 100 ng/ml) in SS containing 0.1% bovine serum albumin (BSA: Sigma Chemical Co., St Louis, MO, USA) to avoid adsorption of activin to the plastic surfaces.

Analysis of gene expression using RT-PCR and real-time RT-PCR

Total RNA preparation and RT-PCR were performed as described previously (Sedohara et al., 2002). Total RNA was extracted from 10 or 15 animal cap pieces for each dose of activin for Xenopus laevis and Xenopus tropicalis. Real-time RT-PCR was performed on an ABI PRISM 7700 (Applied Biosystems) using SYBR Green PCR Master Mix (QIAGEN) according to the QuantiTect SYBR Green Kit instructions, as described previously (Abe et al., 2004). The PCR primer pairs are listed in Table 1 (Abe et al., 2004, Haramoto et al., 2000, Sun et al., 1999). To ensure that the PCR was in the quantitative linear range, a sample dilution series was performed for each primer pair. Ornithine decarboxylase (ODC) was used as a loading control (Osborne et al., 1991). The relative expression amounts were normalized to ODC.

Histology

For hematoxylin and eosin staining, the explants were fixed in Bouin’s solution (75 ml saturated picric acid, 25 ml formalin and 5 ml glacial acetic acid) for 3 hours at room temperature. The samples were then dehydrated through a graded ethanol series (70%, 90%, 99.5% and 100%) for 15 minutes each, infiltrated in xylene for 20 minutes before embedding in solution (75 ml saturated picric acid, 25 ml formalin and 5 ml glacial acetic acid) for 3 hours at room temperature. The samples were then dehydrated through a graded ethanol series (70%, 90%, 99.5% and 100%) for 15 minutes each, infiltrated in xylene for 20 minutes before embedding in paraffin (Histoprep 54B). The samples were sectioned serially at 6 μm for hematoxylin and eosin staining.

Acknowledgments

This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture and Technology, Japan.

References

Received: June 2005
Reviewed by Referees: August 2005
Modified by Authors and Accepted for Publication: October 2005
Edited by: Makoto Asashima