doi: 10.1387/ijdb.082825cg

SUPPLEMENTARY MATERIAL

corresponding to:

Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians

CRISTINA GONZÁLEZ-ESTÉVEZ, VARVARA ARSENI, ROSHANA S. THAMBYRAJAH, DANIEL A. FELIX and A. AZIZ ABOOBAKER*

SUPPLEMENTARY TABLE

OLIGOS USED FOR AMPLIFYING PROBE TEMPLATES FROM GENOMIC DNA

miRNA	Forward Oligo (5'-3')	Reverse Oligo (5'-3')	Product Length (bp)
sme-bantam-a	CCAATGACACCAAACACCAATCGAT	TGTTGCCCACTGTCATTTTACCAGC	423
sme-bantam-b	TGTGTGCAATGAGTCATTCAATGCG	TTGACGTAAGGATCGCCCTGATTTT	523
sme-bantam-c		GTACGACACAATTCACATTCAG	503
sme-let-7a	TTTTCTAGCCATTGTGAACAGTT		541
sme-let-7h			501
sme-let-70			622
sine-let-70			022
sme-IIn-4a			457
sme-lin-4b	ACTAGGICAAGITAGIGAACTGCCTCAG	GGAAATICGCTGATAAAGTCAACACA	503
sme-lin-4c	CCAAICAAAICGACIGIIAGCCAG	CCTTGCACTTGAAGGAAATTTGCC	487
sme-mir-1a	TCAGTATGCCAGTTTGTGATTCG	ATAAATTGCTATTCGGAACGTTG	405
sme-mir-1b	TGTGCACAATAACTATTATAACC	CTTATGATTAACTTGCTAAATAA	458
sme-mir-1c	CTGTGCCTGGATGATGAGTGCTA	CATCTATCTATCCAACGAGATCCC	444
sme-mir-2a-1	AAGTGCTATTAGTGAAATAAATT	TAAATTAAAATACTTTAAACTGATA	451
sme-mir-2a-2	TGGTCATTTCTTTGCCTAGATTT	AAAATGCCTTGCTCAAATTGAAT	454
sme-mir-2b	GGCAATTTAATTTCAAAAAATTTG	TGGCATAAACATTGAAATGATAAA	476
sme-mir-2c	GCCTTAGTAATTATTTCATTTCAAGG	AATTTCCACATATTCCGAAGATTT	470
sme-mir-2d	TATTCTTTTCGAAATTTTCGCTG	TATATAATTATCATATCACAGCCGCC	492
sme-mir-7a	TAGTAATATTACCATACAGTTTATTTC	ATAACTTACTGCTTTAAGAAGAAA	510
sme-mir-7b	GGTCGATTGGTCGGCAAATGAGCT	CAAGGGGCAGCAAGGAACAGTAAA	502
sme-mir-7c	GTIGTIGTIGTIGCIGCIGTIGTIGTI	GCAGGGAAGTTTCGATTCAGTTTTCA	613
sme-mir-8		AAGCCCACAAATGTTGTCGTTTCAC	538
smo-mir-10			671
		GCCTGAGAAGAAGCTCCATTGATCC	671
sme-mir-12	ATAATAATIGIGGIAGTAAACGGG	GGCAATTACATCGTGTTTATTCTA	464
sme-mir-13			0.15
sme-mir-31a	CTGAAACTITTTCTTATCGCCAGTG	GCTTTCTTTTCGATGTGGATGA	645
sme-mir-31b	TTATCAGATGCTGAGCTCACAGA	GTAATTTGTGTGTTGCCCCTAT	550
sme-mir-36	TCATTGTCATTGCAGAAGTGAG	CAGAAACAGTATGGCGTTTTACC	599
sme-mir-61	GCAATTTAAATTGGGCACAAACT	AGTCCAATTATTGCAATGAACTTT	579
sme-mir-67	TCTCATGGACTGCATACGAGA	CCCATTCGATGGAGATTCTAAA	525
sme-mir-71a-1			
sme-mir-71a-2			
sme-mir-71b	ACCACCAATGCTGACTGTGA	CACAGCATCATCACCTCAATAA	684
sme-mir-71c			
sme-mir-79	TAGACAAAGCCGCAGTTTAAATGC	GTTTTCACGGACGATTCATGTA	699
sme-mir-87a	CTCCCTTTAAATTCTATGCTGGTC		673
ome mir 97h			603
sille-illii-67D		GLACACAAACACGAGATGAATGAA	052
sme-mir-92	GCACITGICICAATATCIGAAACC		556
sme-mir-124a		ACCAGGAGACTACTCTGATTATTAT	600
sme-mir-124b	TAAACCATTTAATTCAGCATTCACCGC	IGCITICACCATACAAATACCGCATTI	515
sme-mir-124c	ATTTAGCACACATCTTGACAGAGC	TTATAGTTCTGAAAATAGCCTTCG	500
sme-mir-133	TTATTTCAAATTTCAATTCTACGTA	TTTAATACAATTTCAAGAACCAATA	500
sme-mir-184	ATCATAATTAGAAATTATTATTTT	TATCAATAATAATAATAACAATAAT	550
sme-mir-190a	GCCACCTATTAATGCCGATTAGAGCG	TCCTAAATATAAATTTAAATATAAA	500
sme-mir-190b	CAAATGTGCATGTATTTATAATGGTGA	TATTTTTAAAACAAGCACCGCATTT	519
sme-mir-219	CCTGCTTTTATATTATTATCAACAC	CTATGCTTTTATATGTTTACGGTTA	500
sme-mir-277a	AATCACTGTGAAAATGCATTATCTG	TTTCCATTAATATGATAAGACGATT	609
sme-mir-277b	ACTIGIATIATIGITGIATIGITATIG	TATCCGATAGTGCATTTATACATTT	489
sme-mir-277c		ΤΔΑΤΤΔΔΔΑΤΑΤΔΤΟΔΤΟΤΟΔΤΔΔΔΔ	520
sme-mir-277d			020
ome mir 279	TTECTCCCATTAACCOTCTCTCA	CATTOCOCOTTICCACTCATTICTA	650
sille-illii-276	TTOOLOGICATIAACCOTCIGITGA		659
sme-mir-281		TIGCGCATTICATAATGTTTTIGCC	561
sme-mir-745	IGGIIIAGIAICGAAICIIACIGIG	CCIAAAAACAACCAGIICIIGG	537
sme-mir-746	AATTCTATAGAGCATTTGGGAA	AAGGTGACGCTTCTCAAATTAT	444
sme-mir-747	GAATTATTGACCAAGTTTGCCT	TCTCAATTCCAAGTATTCTTCG	542
sme-mir-748	AACAAAATGAAATTAGTTACTC	TAGATTTCAAGATTATTTATAA	298
sme-mir-749	GGCATTATTGCCGTAGGTAGGAACG	AAATTGGCCCCCACTAGTCAGAA	484
sme-mir-750	TCTGAGAATGAATTCGACGCAAACC	CACATCGCATTTGAAAACATGTTGA	469
sme-mir-751	TTGTATGATATTTTGTCGTGGC	GTGAGGTCATCAAAGACTATCAAAA	536
sme-mir-752	GACATCATTATTTGACTGTCGA	TTTCAGAATGCTCATTGAGTTC	505
sme-mir-753	GGTGGAATTCCCTGATTCAGTTC	ACCAGGAGCAGTGGTACCAGAACCT	611
sme-mir-754			
sme-mir-755			
sme-mir-756	TAATGAATGTTGTTCTCCACTATGC	AAAGAGCGGCCATGTTTATTTT	417
sme-mir-A	GTGGATGTATTCCAAACACATGCCC		156
smo-mir-P			450
			400
sme-mir-C		CCTAGTGGAAAATCTTAATGTG	485
sme-mir-D	00440404040400		
sme-mir-Ea	CGAACACACACACCATGAAAACTT	AGCCTTGAACCATCGCTCATTTCA	668
sme-mir-Eb			
sme-mir-F	GATTAAAATTTTGATCTACTGG	ATGGAGTATTGAGTGAACATTG	491
sme-mir-G	ACCGTAGCACACCGCACTATCAAAA	GATGGAAATTTTTGAACGGCTTC	568

The different colours indicate different miRNA clusters with the exception of black colouring which indicates miRNAs excluded from the analyses.

Supplementary Fig. 1. Planarian miRNA expression patterns in asexual *S. mediterranea*. This figure shows whole-mount ISH for miRNAs that do not appear in Fig. 1. Scale bars indicate 0.7 mm.

Supplementary Fig. 2. Maximum variation in miRNA expression patterns in asexual S. mediterranea. This figure shows whole-mount ISH for sme-mir-31b and sme-mir-C and how the expression patterns can look somewhat different for a non-planarian expert, however always show a subset of specific features. (A-F) sme-mir-31 is classified as expressed in the CNS (around the brain ganglia and nerve cords) and shown in A and Fig.1U. In in situ experiments for this miRNA, A is representative 59% of animals while B represents 3% of the cases, C, D and E collectively represent around 20% and F represents around 20%; A shows expression around the brain ganglia (black arrow), nerve cords (red arrow) and posterior enhanced expression (square); B shows only expression around the brain ganglia; C, D and E show expression around the brain ganglia, nerve cords, posterior enhanced expression and in the innervation of the mouth (arrowhead) The differences among these three are based on the intensity of the staining in relation to the background, for instance E has a much more intense staining for all the features compared to C and D; another clear difference is that posterior staining is broader in E respect C and D. This could be explained in terms of physiological/homeostatic stage, for instance E could be a 20 days regenerating planarian or an adult planarian close to fission, both stages are not possible to be distinguish visually from a standard adult. F shows expression around the brain ganglia, very weakly in the nerve cords, posterior enhanced expression and mouth. (G-J) sme-mir-C is classified as expressed in the excretory system and parenchyma and shown in G and Fig. 11. In in situ experiments for this miRNA, G represents 60% of animals while H and I represent 20% of animals respectively and J represents 20% of animals. G is expressed in the mid-posterior part of the excretory system (arrowhead), in sub-epidermal marginal adhesive gland cells (arrow) and in the entire parenchyma (asterisk); H to J are expressed in the same regions however the high intensity of the expression in the mid-posterior part of the excretory system (arrowhead) decreases its resolution. Scale bars indicate 1 mm.

Supplementary Fig. 3. Expression of sme-mir-749 is restricted to an area near surface/ epidermis. (A-B) Whole-mount ISH for adult asexual planarians showing the dorsal (A) and ventral (B) expression of sme-mir-749 near the epidermis; the arrows in A and B indicate the level of the transversal section shown in C and D. (C-D) Transversal sections indicate that the expression is stronger in the ventral epidermis (v) than in the dorsal one (d). Scale bars indicate 1 mm in A and B and 700 μ m in C and D.

Supplementary Fig. 6. miRNA expression patterns with nascent probes versus LNA probes. The figure corroborates the patterns obtained for two miRNAs using nascent probes, by using LNA probes. Expression pattern of sme-let-7c using the nascent probe in adult asexual planarians (A) is the same as using a LNA probe (B). Expression of sme-mir-67 using the nascent probe in adult asexual planarians (C) is the same as using a LNA probe 1 mm.

Supplementary Fig. 7. Dorso-ventral distribution of smelet-7c mature miRNA transcript detected by a LNA probe.

A and B show confocal projections from different focal planes of the same sample. (A) Confocal projection of some slices from the dorsal part of the animal. sme-let-7c is stained in red and nuclei in blue. Note that there is staining in the dorsal midline (arrow) more diffuse staining in the dorso-lateral part of the parenchyma (asterisks). (B) Confocal projection of some slices from the ventral part of the animal. sme-let-7c is stained in red and nuclei in blue. Note that there is staining in the ventral midline (arrow) and also in the dorso-lateral part of the parenchyma (asterisks). The scheme on the right indicates by a blue square the area shown in A and B. ph indicates pharynx. Scale bars indicate 500 µm.

ph

Supplementary Fig. 8. Scheme showing two different cell populations in the planarian parenchyma. *miRNA expression patterns in irradiated and non-irradiated animals show that population A is insensitive to irradiation whereas population B is sensitive to irradiation. ph, pharynx.*