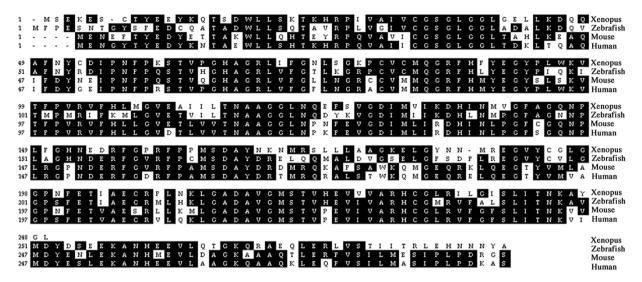
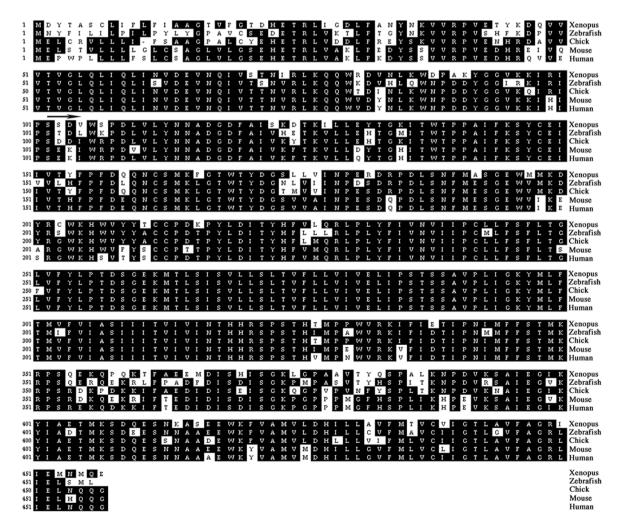
doi: 10.1387/ijdb.072474ab



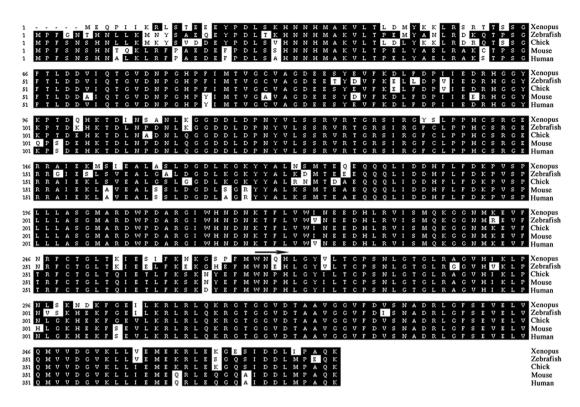
SUPPLEMENTARY MATERIAL


corresponding to:

Dynamic expression pattern of distinct genes in the presomitic and somitic mesoderm during *Xenopus* development

AUDREY BOURDELAS, HONG-YAN LI, CLÉMENCE CARRON and DE-LI SHI

Supplementary Fig. S1. Sequence alignment of purine nucleoside phosphorylase protein in Xenopus (NP_001079809), zebrafish (XP_001331743), mouse (NP_038660) and human (NP_000261).


Supplementary Fig. S2. Sequence alignment of acetylcholine receptor α 1a protein in Xenopus (NP_001085869), zebrafish (NP_571520), chick (NP_990147), mouse (NP_031415) and human (NP_000070). The arrow indicates the beginning of the probe used for in situ hybridization.

Supplementary Fig. S3. Sequence alignment of aspartate aminotransferase protein in Xenopus (NP_001080543), zebrafish (NP_998222), chick (NP_990652), mouse (NP_034454) and human (NP_002070). The arrow indicates the beginning of the probe used for in situ hybridization.

Supplementary Fig. S4. Sequence alignment of glycine amidinotransferase protein in Xenopus (NP_001079699), zebrafish (NP_955825), chick (NP_990076), mouse (NP_080237) and human (NP_001473). The arrow indicates the beginning of the probe used for in situ hybridization.

Supplementary Fig. S5. Sequence alignment of the brain isoform of creatine kinase in Xenopus (NP_001080363), zebrafish (NP_775329), chick (NP_990641), mouse (NP_067248) and human (NP_001814). The arrow indicates the beginning of the probe used for in situ hybridization.

Supplementary Fig. S6. Sequence alignment of the muscle isoform of creatine kinase in Xenopus (NP_001080073) zebrafish (NP_571007), chick (NP_990838), mouse (NP_031736) and human (NP_001815). Arrows indicate the region used for in situ hybridization.