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Wilms' tumor suppressor gene (WT1) as a target gene of SRV
function in a mouse ES cell line transfected with SRV
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ABSTRACT With the aim of identifying the genelsllocated downstream from SRY, wetransfected
an ES cell line with XXkaryotype, TMA- 1S, with a S,yDNA construct and established cell lines, TS1S-
1 and TS18-2, where the transfected Srywas expressed in the functional linear mRNA form. Among
the five potential SRY-target genes examined, i.e., MIS, SF1, P450arom, Sox9 and WT1. only the
expression of WTl was induced de novo by the unscheduled expression of Sry in the transfected
cell lines. No clear indication of Sry-induced enhancement of Sox9 expression was obtained in the
present series of experiments. Function of a yet unidentified genelsJ located on the Y chromosome
might be needed for the up-regulation of Sox 9 expression which takes place during the develop-
ment of male gonads. Quantitative RT-PCR analysis of the patterns ofWT1 expression in developing
fetal gonads revealed that although both male and female fetal gonads express WTl, male gonads
invariably expressed WTl mRNA at higher levels than female ones after the Sry expression.
Immunohistochemical analysis of the male fetal gonads between 10.5 and 13.5 dpc demonstrated
the presence of strong WTl immunoreactivity in Sertoli cells of the primordial testes. Suggestions
were made in the past indicating that both SF1 and WT1 proteins might be active in a common
pathway upstream from Sry. Our results showed that WTl is located downstream, rather than
upstream from Sry and behaves independently from SF1. Analysis using an appropriate in vitro
system will be essential to understand the molecular mechanisms of SRY action within cells.

Introduction

The complete sequence of genomic SRY DNA was determined
by Sinclair et al. (1990) in humans and by Gubbay et al. (1990) in
mice. Subsequently. a 14 kb genomic DNA fragment containing the
Sry locus was microinjected into XX mouse embryos and shown to

direct the development of the male phenotype In chromosomally
female mice (Koopman et al.. 1991). The phenotypically male XX
transgenic mice were sterile (Koopman et al.. 1991), because the
Y chromosome of the mouse contains genes responsible lor
spermatogenesis (Burgoyne et a/.. 1992: Reijo et a/.. 1996). The
transgenic study demonstrated not only that Srycodes forthe testis
determining factor (Tdy) but also that, aside from those Y-linked
genes responsible lor spermatogenesis. all of the genes required

~
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for testicular differentiation are present in the XXgenomes (Koopman
etal.. 1991)

Although the Srytransgenic mice revealed many important facts
about the function of SRY in vivo. relatively little has been learned
about the cellular and molecular mechanisms through which Sry
induces differentiation of the indifferent gonads Into testes.

Since the SRY protein possesses a DNA-binding domain en-
coded by the HMG box of SRY(Slnclair etal.. 1990: Gubbay et al.,
1990: payen and Cotinot, 1993.1994: Su and Lau, 1993: Coward
et al.. 1994: Hacker et al.. 1995) and binds to specific DNA motifs
in vitro (Harley et al.. 1994). it has generally been assumed to act
as a transcription factor. triggering a cascade of gene expression
that induces the bipotential indifferent gonad to develop into a testis
(Dubin and Ostrer. 1994). So far. several genes have been put
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Fig. 1. Schematic representation of the Sry DNA construct used for
the transfection experiments. The srructure at the cotJstruct IS rhe same
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forward as candidates for the genes comprising the hypothetical
SAY cascade. including those coding for Mullerian inhibiting sub-
stance (MIS) (Haqq et al.. 1993. 1994), P450 aromatase (P450
arom) (Haqq el al.. 1993: Hirota et al.. 1996) and steroidogenic
factor 1 (SF1) (or adrenal 4-binding protein, Ad4BP) (Ikeda et al.,
1994: Shen el al., 1994), as well as Sry-like HMG-box gene 9
(Sox9) (Foster et al.. 1994: Wagner et al.. 1994) and the Wilms'
Tumor suppressor gene (WT7) (Pelletier el a/.. 1991: Denny et al..
1992: Harley et al.. 1994). However. little information is available
in the literature concerning the interaction within the cell between
these genes and SRYISry.

It is known in the mouse that Sry mANA is not only expressed
in the somatic cells of the fetal gonad at the time of sex determina-
tion, but also in both germ cells and somatic cells of the adult testis
at a high level (Aossi ef al.. 1993: Zwingman et al., 1994). The Sry
transcripts in the adult testes. however, are circular and probably
non.functional owing to their failure to properly interact with
rIbosomes (Capel et al.. 1993: Hacker el al.. 1995: Jeske el al..
1995). The circular conformation of the Srytranscripts is due to the
presence of inverted repeats on the S' and 3' ends of the open
reading frame (OAF). These invertedrepeatsare thoughtto lead
to the formation of a loop structure that facilitates splicing to form
the circle (Gubbay ef al.. 1992: Dubin ef al., 1995).

To identify SRY target genes, we transfected cells from a
cultured mouse Sertoli cell line. TM-4, which does not express the
endogenous Sry gene with a mouse Sry DNA construct where the

5' inverted repeat flanking the ORF was removed.and replaced
with the CMV promoter (Hirota et al.. 1996). In the established
transfected cell lines (TMHm cell lines in our laboratory). the
unscheduled expression of linear Sry transcripts induced the
expression of the gene coding for P4S0 aromatase, P450arom.
which is not expressed in the non-transfected TM-4 cells (Hirota et

al.. 1996). Although this finding is of much interest. it may not be
representative of the phenomena taking place during development
in vivo. since TH-4 cells are already well differentiated cells. We
wondered if different genes might be mobilized by the expression
of SRY gene in undifferentiated pluripotent embryonic cells. To
answer this question, we introduced the same Sry DNA construct
that was employed to transfect TM-4 cells into cells of an embryonic
stem (ES) cell line with an XX karyotype (TMA-1S) and investigated
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Fig. 2. AT.PCA analysis of Srytransgene expression using the primer
sets specific for the HMG box IB1/B21 and for the linear transcripts
111/l2J. (AI E ~()ress,on of the Sf)' rransgene as dewCted b~ ;.'le 81/82
prrmef set M. TOOODlaader lane I, mouse ad;;/r,t's,'s !pOSitn,econrro/}.

la"';e2-5, S'\-tra'1s"ectea eel/lines TS '8-llla"'e 231 a"a TS18-2{Ia"e oJ 51

1\'lrf'1rla')e 2. JI or Iv'rhour rJar:e3.51 RTase Lane 6 ana 7. rlan-:rarsfecteo
cell Ime. TM4-18. I\'�th or mthour RTase. respectlvel\, Tf'1e rransgene IS
e\pressed abundantly In the rralJsfecred celilmes (B) E~pressron of rf'1e

linear transcripts as detected by the L IIL2 primer set Lane I. undlfferen.

tlated gonads of 11.5 dpc (pos/rlve control). lane 2 and 3. Sry-rransfected
cel/lme T518- I m with Oane2J or wlthour (ldne31 RTase Lane oJanQ 5, Sq.:-
transfeeted cell line TS 18-2 with /lane 41 or mthout (la'1e 51 RTase La'1e 6

a'1d 7. non~:rdnS'ecreQ eell II'"!e 1\lth or IVlthOu! RTase respective 'I r'1e
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respectp.;ely. No band eorrespondmg rn size to the circular transcripts was

detecred rn the transfecred cellirnes
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Fig. 3. Proliferative activities of the non-transfected TMA-1S and the
Sry-transfected TS18-' cells. (AI Changes In cell numbers according to
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the effect of fhe foreign Sry gene expression upon hypothetical
SRY cascade genes.

ES cells of the mouse maintain a high degree of pluripotency.
and can differentiate in vivo into all cell lineages when injected into

preimplantation embryos (Bradley et al.. 1984: Nagy et al.. 1990:
Nagy and Rossant, 1993: Saburi et al.. 1997). They may further-
more be induced to differentiate in vitro into several cell lineages
including skeletal muscle (Aohwedel et a/.. 1995). cardiac muscle
(Uno. 1982), hematopoietic (Miwa eta/.. 1991: Schmitt etal.. 1991:
Wiles and Keller. 1991) and neuron-like cells (Bain et al., 1995:
Fralchard et al., 1995). We chose an ES cell line as our host for the
transfection experiments. because most of the developmentally
important genes in ES cells are expected to be in a state capable
of expression when properly induced. and their differentiation
pathways may be charted de novo under the influence of the
transfected genes. ES cells that are karyotypically XX cells pos-
sess the gene set required for testicular differentiation (Koopman
et al.. 1991), but the putative Srycascade genes have never been
under the influence of the endogenous Sry gene products prior to
the transfection experiments.

IITla.\ a largel gt'lIt' o(SR), a"lioll 11-15

The RT-PCR analysis of the transtected cell lines revealed Sry
induced the expression of WT1. which is often considered to be
situated upstream rather than downstream of SRYaction.

Results

Establishment of XX ES eel/lines expressing functional Sry
transcripts

We established 17 lines of XX ES cells stably transfected with
Sry. Throughout the subsequent series of experiments. 2lines, i.e.,
TS 18-1 and TS 18-2, were used. RT-PCR analysis ofthe transfected
cell lines was earned out using the two primer sets. i.e.. 81/82
which amplify the HMG box region, and L 1IL2 specific to the linear
Sry transcrrpts as described in Materials and Methods (Fig. 1). In
the transfected cell lines screened by the RT-PCR method using
81/82 primers (Fig. 2A). the expression of the linear transcripts
was confirmed (Fig. 2B). On the other hand. RT-PCR analysis
perlormed using the C1/C2 primer set specific to the circular
transcripts yielded no visibly recognizable bands corresponding in
size to the circular SrymRNA in any transfected cell lines (Fig. 2C).
From these results it was concluded that the Srytransgenes were
expressed only in the functional linear form in the transfected lines.

Morphologically, the transfected ES cells were indistinguish-
able from the normal non-transfected TMA-18 cells. The transfected
ES cells formed cystic embryoid bodies when they were cultured
in non-adhesive dishes for 10 days. suggesting that they had
maintained their pluripotency (data not shown).

Proliferative activities of the transfected and non-transfected
cell lines were compared by either counting the number of cells or
assaying the rate of BrdU incorporation during the log phase of
growth. The expression of foreign Sry did not affect the rate of
proliferation (Fig. 3A and B).

Effects of the expression of exogenously introduced Sry
genes upon potential SRY-target genes in XX ES eel/lines

We investigated the effects of expression of foreign Sry genes
upon the expression of several possible Sry-target genes in the
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Fig. 4. AT -PCA analysis of the expression of WT1 in the non-transfected
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transfected XX ES cell lines The expresSion levels of five genes
potentially under the direct or Indirect control of Sry. Le.. MIS. WT1,
SFt, P4!)O aronl. and Sox9 were examined in the transfected cell
lines by Ihe RT-PCR method.

To our surprise. it was found thai the WT1 was expressed at
relatively high levels in Ihe TS18-1 and TS18-2 cell lines (Fig. 4):
no WT1 expression was detected in the control non-transfected
TMA-18 cells. On the other hand. no transcripts ot MIS. SF! or
P450 arom were detected in either the non-transfected cell line
(TMA-18) or the translected cell lines (TS18-1 and TSl 8-2) (Fig.
5).

Sox9. anotherputallve target gene of Srywas expressed in both
the TS18- 1 and TS 18-2 cell lines as well as in the non-transfected
TMA-18 cell line (Fig. 5).

Expression patterns of WTI in the developing gonad of the
mouse

On the basis of the observation described in Ihe previous
section. that WT1 expression was stimulated by the expression of

exogenously-introduced Sry in XX ES cell lines. we hypothesized
that WT1 might be one of the direct target genes 01 Sry. up.
regulated by SRY protein in the developing fetal testis.

Therefore we examined the patterns of WT1 expresslun in the
developing gonad during the period shortly after the expression of
Sry in vivo. In the gonad of an XY fetus. Sry has a narrow window
01 expression: beginning on 10.5 dpc: peaking on 11.5 dpc:
declining to a low level on 12.5 dpc: and being totally absent by 13.5
dpc (Koopman et a/.. 1990: Hacker et al.. 1995).

We carried out quantitative RT-PCR analysis of the genital
ridges 01male and female gonads collected on 10.5-135 dpc (Fig.
6A.B). The results clearly demonstrated that the expression levels
of WT1 during these periods was invariably higher in the male fetal
gonads than In the female gonads (Fig. 68).

Western blot analysis of expression of WT1 protein in fetal
gonads

Fetal gonads dUring the period of sexual dIfferentiation were
analyzed by Western blotting. The representative results are
presented in Figure 7. Indifferent gonads and male fetal gonads
exhibited strongly positive signals whereas the female gonads
were only faintly positive. in agreement with the results of RT .PCR
analysIs.

ImmunohistochemicallocaUzation of WT1 in the developing
gonad

We examined the patterns of localization of WTt protein in 11.5-
13.5 dpc fetal gonads by means of immunohistochemistry. In
Figure 8 representative photomicrographs showing the localiza-
tion of WT1 immunoreactivity in the male and female fetal gonads
of 13.5 dpc are presented. Although the nuclei 01the mesenchymal
cells were generally stained both in the male and female fetal
gonads. the nuclei of primordial Sertoli cells were stained more
strongly than the mesenchymal cells in the male gonads, account-
ing for the high expression levels of WTl in the developing male
gonad.

Discussion

In the present study, we succeeded in establishing XX ES cell
lines. TS18-1 and TS18-2. where Sry was expressed in the
functional linear mRNA form. and examined the expression of five
potenhal target genes of SRY protein. i.e.. MIS. SF!. P450arom.
Sox9and WTI in the transfected cell lines by the RT-PCR method.
The most significant findings that emerged from the present series
of experiments was that the unscheduled expression of Sry in-
duced the expression of WTt in the transfected cell lines.

Capel and her co-workers (1993) translected an epithelial cell
line derived from mouse lungs with 13 kb genomic DNA fragment
containing Sry ORF and the inverted repeat fused with the p8R
vector. Although the transfected cell line SN 18 expressed Sry
transcripts at a high level. it was confirmed that they were circular
and in non-functional form (Capel ef a/., 1993). Since the formation
of circular transcripts of Sry is due to the presence of inverted
repeats althe 5' and 3' ends of ORF (Dubin ef a/.. 1995). we excised
the Sry ORF so as to exclude the inverted repeat 01the 5' end and
10lned It to the CMV promoter (Hirota cf al.. 1996). The RT-PCR
analysis done by using the primer set L1/L2 which is specific to the
linear Sry transcripts established that the transfected ES cell lines
indeed express functional Srytranscripts.
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Cohen et a/. (1994) also attempted to analyze the SRY action in
vitro.They ca-transfected CHO K 1 cells with the plasmid construct
which contains the 2.1-kb human SRY insert downstream of the
cytomegalovirus early promoter, and another constructcontaining
the CAT reporter gene driven by a 2.1-kb segment of the 5'
regulatory region of the rat !ra-l gene. Their results demonstrated
that SRY enhanced the expression afthe rat (ra-l in the transienlly-
transfected cell lines (Cohen eta/.. 1994). Since SRY proteins have
been known to exhibit considerable species specific variations
both structurally (e.g.. Gubbay et at.. 1990: Su and Lau. 1993:
Coward et at.. 1994: Payen and Cotlno!. 1993.1994: Daneau et at..
1995) and functionally (Koopman et at.. 1991: Hirota et a/.. 1996).
the system employed by Cohen et a/. (1994). i.e.. human SRY
acting upon rat (ra-1 promoter sequence in Chinese hamster cells.
is too complex to allow meaningful speculation about the function
of SRY. In fact. Itwas found in a subsequent study that 'ra 1 is not
expressed in fetal gonads at any stage at or around the critical
period when Srytranscripts are present. excluding a role for (fa 1in
sex determination and differentiation (Jeske et a/.. 1996). Although
the ES cells we used In the present series of experiments are not
the cells in which Sry normally acts, our results are supported by
our in vivo studies.
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Curiously. P450arom expression which was induced by the
exogenously introduced Sry construcl in the Sertoli cell-derived
TM-4 cells (Hirota et at.. 1996). was not induced in the Sry-
transtected TS18-1 and TS18-2 cell lines. Similarly. MIS which is
expressed in the TM-4 cells regardless of the expression of Sry
(Hirota et al.. 1996) is not expressed in either the non-transfected
TMA-18 nor the transfected cell lines.

Soxgexpression was observed in the non-transfected TMA-18
XX ES cell line as well as in the transfected cell lines. In mice. Sox9
has been shown to be expressed at a low level in indifferent gonads
of both XY and XX sex chromosome constitution. As gonadogenesis
proceeds expression levels are gradually intensified in male go-
nads with the expression being localized to Sertoll cells. Con-
versely, in the female gonad. Sox9 expression disappears after
12.5 dpc (Kent et a/.. 1996: Morais da Silva et at.. 1996). The
sexually dimorphic patterns of Sox9 expression suggested that
Sox9might be involved in the hypothetical Srycascade (Kent et a/..
1996: Morais da Silva et a/.. 1996).

In TMA-18 cells. however. Sox9 expression of a low level took
place independently of Sryexpression, in general agreement with
the findings in vivo. It might be possible that function of a yet
unidentified gene(s) located on the Y chromosome and activated
in a temporally-regulated manner might be needed for the up-
regulation of Sox 9 expression during the development of male
gonads. Careful analysis of the patterns of Soxgexpression in the
Sry-transgenic XX mice will be of value to answer the question.

In our system. WT1 expression was induced de novo by the
action of the Srytransgene. In order to correlate the finding with the
developmental events in vivo. we examined the patterns of WT1
gene expression in fetal gonads dUring the period immediately
after the expression of Sry. Quantitative AT-PCR analysis re-
vealed that although both male and female fetal gonads express
WTI. as reported earlier by Pelletier et a/. (1991). a stnking
difference emerges in the amount of WT1 transcripts between
female and male gonads shortly atter the window of Sry gene
expression. Immunohistochemical analysis of the male and fetal
gonads between 11.5 and 13.5 dpc revealed the presence of
strong WT1 immunoreactivity in Sertoll cells. which become recog-

Fig. 7. Western blot analysis of WT1 protein in developing male and

female gonads. ProteIn eQUI~'dleni JIldn1C1unt r03 fera/gonads \\a5 loaaea
m eacf1/ar1e Lane
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nizable around 12.5 dpc in the primordial testes after the transient
expression of Sry, probably accounting for the higher expression
levels of WT1 in the male fetal gonads.

Because WT1 is expressed more in the lateral mesenchyme
from 9.0 dpc before the onset of the surge of Sryexpression. Le.,
10,5 dpc (Armstrong et a/.. 1992), it was hypothesized that WT1 is
located upstream from Sry and essential for establishing the
cellular environment for Sry expression (Koopman, 1995). Con-
versely. suggestions were made indicating that both SF1 and WT1
proteins might be active in a common pathway upstream of Sry
(Ramkissoon and Goodfellow, 1996). In our system, however,
WTI and SF1 behaved independently of each other. Unfortu-
nately, mice homozygous for null mutations at the WT1 locus
produced by gene targeting lack both kidneys and gonads and
hence the effect of mutailon in WT1 upon Sryexpression could not
be determined (Kreldberg et a/.. 1993).

Our results indicate that WT1 is located downstream, rather
than upstream, from Sry. WT1 has been shown to be expressed in
the developing kidney and in the genital ridge (Pritchard-Jones et
al.. 1990: Pelletier et al.. 1991: Armstrong et al.. 1992), In the
developing kidney, WT1 is expressed in the condensed mesen-
chyme, renal vesicle and glomerular epithelium in cells undergoing
the transition from mesenchymal cells to epithelial cells that were
destined to form the tubular structures of the fetal kidney (Pritchard-
Jones et a/.. 1990: Armstrong et a/.. 1992),

In the developing gonad. the formation of testicular cords is the
first morphological sign of the differentiation of the testis, alignment
of primordial Sertoli cells into cords around the germ cells being the
first step of cord formation (reviewed in Hunter. 1995). Since the
gonad and the kidney share a common mesodermal origin. it might

be possible that WTI plays a critical role in both the tubular
alignment of Sertoll cells in the testis and in the formation of ductal
systems in the developing kidney.

It is not clear at present whether WT1 is directly influenced by
SAY protein in the Sry-transfected cell lines. or there are interme-
diary genes yet to be identified between Sry and WT1, There have
been published reports, supporting the notion that WTl is directly
regulated by Sry, For example, WTI promoter contains a consen-
sus DNA binding sequence for Sry, i,e.. 5'-AACAAT-3', and
recombinant Sry protein was, in fact. found to bind to the AACAA T-
containing oligonucleotide sequence of the WT1 promoter region
(spanning from -241 to -214) by electrophoretic mobility shift assay
(Denny et al.. 1992: Harley et a/.. 1994).

In our previous study using the Sertoli-derived TM-4 cells the
Sry transgene induced the expression of P450arom. whereas in

the present series of experiments the same Sry gene construct
induced the expression of WT1 when transfected into the TMA-18
ES cells with an XX karyotype, Our results provide experimental
proof that the cascade of genes mobilized by SRY may vary
according to the differentiation status of the cells.

Careful studies using an appropriate combinations of Sry
transgenes and cultured cell lines of different differentiation status
and capabilities will give us important clues to understand the
molecular mechanisms of SAY function within cells.

Materials and Methods

Animals and tissues
ICA mice were purchased from a local dealer (Sankyo Labo Service.

Tokyo.Japan) and bred Irom the stock. The day when vaginal plugs were

found was defined as 0.5 dpc (days post coifum). The primordial gonads
were collected from the fetuses between 10.5 and 15.5 dpc. MesonephroI
were carefully removed lrom the gonads on 12.5-15.5 dpc. When 10.5 and
11.5 dpc gonads were used. the mesonephroi could not be separated from
the gonads and they were subjected as a whole to the RNA extraction
procedures. The male fetal gonads were morphologically identIfied by the
presence of testis cords under a binocular microscope at the tIme of
dissection.

DNA constructs
Genomic Sry DNA was kindly provided by Pro!. RObin Lovell-Badge

(National Institute of Medical Research. London, U.K). SryOAFwas cutout
from the genomic Sry DNA at Xba I sites excluding the Inverted repeat
located at the 5' end and lusedto the CMVpromoter sequence (CMV I$ry).
and digested with Nrulto linearize the construct (Hirota et al" 1996).

ES cell culture and electroporation
A mouse ES cell line with XX karyotype. TMA-18. was established from

an embryo of 129 strain (Takagi, unpublished). Culture of the ES cells and
transfection assays were performed as descnbed by Wurst and Joyner
(1993). Briefly. ES cells were maintained on Falcon tissue culture dishes
(#3003) with embryonic fibroblast cells as feeder cells in Dulbecco's

modified Eagle's medium with high glucose (OMEM high glucose: GIBCO!
BAL, USA) containing 10 pM ~-mercapto-ethanol. 1 mM non-essenllal
amino aCids. 1 mM sodium pyruvate (GIBCO-BAL). and 2000 heaHnac!l-
vated fetal calf serum (JRH Blosclences. Australia). The cells were incu-
bated at 37 C under a humidified atmosphere of 500 C02 in air. Approxi-
mately 2.0x10~ ES cells in 800 !-IIof HEPES buffered saline (HBSI were

electroporated In the presence of 50 pg ollhe DNA construct using a single

pulse generated at the settings of 300 V and 800 pF in a model GTE-10 cell

electroporatlon unit (Shimazu. Kyoto). Ten minutes after electroporation.
the cells were distributed to three gelatin-coated Falcon tissue culture
dishes (#3003). Selection of the successfully Iransfected cells relied on
their ability to grow in a medium containing G418 (300 pg/ml; GIBCO/BAL)
and LIF (103 Units!ml: GIBCO/BAL). The cells were cultured for 1week; the
resistant colonies were picked and subcultured.

Assay of cellular proliferation

Determination of cellular proliferation activities was perlormed using 5-

Bromo-2' -deoxy-undlne (BrdU) labeling and a detection kit (Kit III. Boehringer
Mannhelm Biochemlca). following the procedures provided by the manu.
facturer. Briefly. cells were placed in the wells of 96.well microtiter plates
(#"25860: Corning. USA) and incubated for 24 h at37 C under a humidified
atmosphere of 5°0 C02 in air. Medium containing BrdU (110 IJmoll) was
added and incubated at 37 C for addllional 2 h. Aher incubation, the
medium containing BrdU was removed and cells were washed twice with
the fresh culture medium. After the last wash. cells were Ilxed with chilled
10000 ethanol for 30 mln at -20 C, washed 3 times wllhthe culture medium,

added with the nuclease solution, and incubated for 30 mln at 3TC. Then
the nuclease solutIon was removed and cells were washed 3 times with
fresh culture medium. After removing the wash medium. antl-BrdU.POU
Fab fragmenls (200 mUlml) were added to the wells and Incubated for 30
min at 37 C. After washing 3 times with the washing buffer. cells were
incubated with peroxidase substrale solution lor 2 min at room tempera-
ture. Absorbance olthe samples was measured in a microtlter plate reader
(model 700; Cambridge Biotech., U.K) at 405 nm with a reference wave-
length at 490 nm.

RNA extraction and Rr-PCR
Messenger ANA lor the reverse transcriptase-mediated polymerase

chain reaction (AT-PCA) was extracted from the cultures and fetal gonads
of mice using Quickprep Micro mANA Purilicallan Kit (Pharmacia Biotech..
Sweden) according to the manulacturer's InstructIOns. The mANA obtained
was added to the reaction mixture for reverse transcription (AT) with or
without reverse Iranscriptase (GIBCOIBAL). For the PCA analysIs. 1-5 I1g
reverse transwbed cDNA was added to a 20 III reaction mixture containing



Fig. 8. Photomicrographs showing

the localization of anti-WT1 immuno-
reactivity in male and female fetal

gonads. Sections were stained with

rabbit polyclonal antibodies agamst VVTl
(0.1 ).lg/ml) or rabbit IgG (0 1 ).Ig/ml) for

the negative control. IA) A section of a

male gonad on 13.5 dpc treated with the

anti-\tVT1 antibody as the first antibody

and horseradish peroxidasefHRP)-con-
jugated goat anti-rabbit IgG as the se-

condary antibody. (B) A section of a

male gonad on 13_5 dpc treated with

rabbit IgG and the HRP-conjugated goat

anti-rabbit IgG as negative control. ICI A

section of a male gonad on 13 5 dpc

treated with antl-\tVTl antlbodv as the

first antibody and the HRP-conjugated
goat anti-rabbit IgG seen at high magni-
fication. (D) A section of a female gonad

on 135 ape trei'itArl wlrh Antl-\tVTl anti-
body and the HRP-conjugated goat anti-

rabbit IgG Bar, 100.um.
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250 pM dNTPs, 1 U Taq polymerase (rTaq: Takara, Kyoto). and 0.5 pM of
each primer. PCA amplification was carried out for 26-35 cycles including
a denaturation step for 1 min at 94cC. an annealing step for 1 min at a
selected temperature between !J0-6!J"C. and an elongation step for 1 min
at noc in a thermocycler (Perkin Elmer Co. Ltd.. USA). A 10 pi aliquot of
the reaction mixture was electrophoresed on a 2% agarose gel. The
procedure for the quantitative PCR was described elsewhere (Kawamata
at al., 1995).

Primers used to detect Sry transcripts
Sequences of the primers used to detect the Sry transcripts were as

follows: 5'-GCCTTTATGCATAAGGAGTCAC-3' (5'-primer; L1) and 5'-
GCTMCTGAAGGTCTGGGTATG-3' (3'-primer; l2) for the linear tran-
scripts; 5'-CCT ACTTACT AAACAGCTGAC-3' (5'-promer; CI) and 5'-TCTGT-
MGGCTTTTCCACCT-3' (3'-primer; C2) (prS and Pr4 designed by Cao et
al. (1995)) tor the clrculartorm; 5'-AAGCGCCCCATGAATGCATTT ATGGT-

3' (5'-primer; 81) and 5'-ACACTTTAGCCCTCCGATGAGGCTGA-3' (3'-
primer; B2) (Gubbay et al., 1990) for the HMG box. The primer set specific
to the linear transcripts was desigfll~d uy the present authors.

Primers used to detect transcripts of potential Sry-target genes
The following primers were used to detect transcripts of the potential

SIY-farget genes: 5'- TCCT ACATCTGGCTGAAGTGA TATGGGAGC-3' (5'-
primer) and 5'-CTCAGGGTGGCACCTTCTCTGCTTGGTTGA-3' (3'-primer)
(Munsterberg and Lovell-Badge. 1991) for MIS; 5'-CCTGCCCAG-
CTGCCTGGAGAGCCAG-3' (5'-primer) arod 5'-TTTTACCTGTAT-

GAGTCCTGGTGTG-3' (3'-primer) tor WT1; 5'-TGGTGTCCAGT-
GTCCACCCTT AT -3' (5'-primer) arod 5'- TCCGTGCACGTGT AATGCTTGT-

3' (3'-primer) (Stromstedtand Waterman, 1995) forSF1; 5'-TCGCTGAGAG-
ACGTGGAGACCTGACGA-3' (5'-primer) and 5'-AGGCTGAAAGTAC-

CTGTAGGGAACATTCT-3' (3'-prlmer) (Terashima et al., 1991) tor P450
arom; 5'-GTGGCAAGTATTGGTCAA-3' (5'-primer) and 5'-GAACAGACT-

CACATCTCT -3' (3'-primer) (9.5b and 9.5c of Kent et al., 1996) for Sox 9.

Western blot analysis
Six fetal gonads were lysed in 20 pI loading buffer (2% 80S, 10%

glycerol, 50 mM Tris-HCI (pH 6.8), 100 mM OTT, 0.1 % bromophenol blue)

and boiled for 5 min. Aliquots of 10 pI were electrophoresed on a 7.5~o
polyacrylamide gel. Protein stainrng was carried ouf uSing SYPRO Orange

(Molecular Probes, Oregon) as described by Steinberg et al. (1996).

Observations were made using a model FLA-2000 image analyzer (Fuji
Film, Tokyo) and Pictrography 1000 (Fujix, Tokyo). Then, the proteins were

transferred onto a nitrocellulose filter (Immobilon Transfer Membrane.
Millipore) in a Transblot Cell (Bio Rad Labomtorics. California) at 60V, 1.2

A. The filter was incubated with a blocking solution (PBS containing 5~~
skim milk) for 1 h at room temperature and treated with 0.1 pg/ml of the
rabbit polyclona! antibodies against WTl (Santa Cruz Biotechnology,
California) overnight at4cC. Atterwashing with PBS 3 times, the filters were

incubated with alkaline phosphatase (AP)-conjugated goat anti-rabbit IgG
(Bio-Rad Laboratories, California) for 1 h at room temperature. The
detection of AP activity was performed using 4-nitro-blue tetrazolium
chloride (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (SCIP) as
substrates (Sambrook et al., 1989).

ImmunohIstochemistry
Fetal gonads were fixed with 4% para formaldehyde in PSS for 30 min

at4"C, embedded in paraffin, and sectioned at 5 pm. After passing through
a graded ethanol series, the sections were heated in a microwave oven
below 95cC for 1a min in 0.01 M citric acid buffer to recover ontigcnicity. The
specimens were then incubated with the blocking solution (PBS, containing

5% skim milk) for 1 h at room temperature and incubated with the rabbit
polyc!onal antibodies against WT1 (0.1 pg/ml) or rabbit IgG dissolved in

PBS (0.1 1l9/ml) as a negative control overnight at 4"C. After washing with
PBS 3 times, the specimens were incubated with a 1:1000 dilution of
horseradish peroxidase(HRP)-conjugated goat anti-rabbit IgG (Bio-Rad
Laboratories. California) in PBS for 1 h at room temperature. Detection was
performed by an HAP reaction using diaminobenzidine [DAB, 0.2 mg/ml in
0.1 M Tris-HCI (pH 7.5)] and hydrogen peroxide (final concentration of
0.03%) as substrates (8ambrook et al.. 1989). For microscopic observa-

tions. a model AX-80T microscope (OJympus) was used.
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