Shh, Fgf4 and Hoxd gene expression in the mouse limb mutant hypodactyly

KATHERINE E. ROBERTSON, CHERYLL TICKLE and SUSAN M. DARLING*

Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK

ABSTRACT The semidominant mouse mutation hypodactyly (*Hd*), caused by a deletion within the *Hoxa13* gene, results in reduced digits; heterozygotes lack digit I in the hindlimb and homozygotes have only one digit on each limb. We investigated expression of *Shh* and *Fgf4* signaling molecules involved in digit specification in mutant limb buds. *Shh* and *Fgf4* are expressed in the posterior part of the limb buds as normal but expression may be slightly prolonged. The extent of digit reduction in hypodactyly is much more severe than in the *Hoxa13* deficient mouse and resembles that in the *Hoxa13'-/Hoxd13'-* double mutant mouse. We found that the pattern of *Hoxd13* and *Hoxd11* transcripts was not markedly different in the mutant compared with the normal limbs even though the mutant limbs are narrower. Therefore *Hoxd* genes are transcribed as normal in the mutant. This makes it likely that the severe digit reductions in hypodactyly are caused by interference with *Hoxd13* function at the protein level. Similar interactions between mutant and normal *HOX* gene products have been suggested to occur in the human semidominant disorder, synpolydactyly, caused by mutations in *HOXD13*.

KEY WORDS: Shh, Fgf4, Hoxd, mouse limb, hypodactyly

The semidominant mouse mutation hypodactyly *(Hd)* affects the digits (Hummel, 1970). Mice heterozygous for *Hd* show variable reduction of hindlimb digit I whereas homozygous animals (*Hd/Hd*) have just one digit on each of the four limbs. Analysis of the skeleton revealed that only distal limb structures are affected and, consistent with this, early limb development in the mutant appears normal (Robertson *et al.*, 1996). A narrowing of the limb bud can be detected as the digital plate begins to form and coincides with an increase in cell death and a gap between the apical ridge and the mesenchyme. In addition, *Hd/Hd* mesenchyme cells in culture show a reduction in chondrogenesis (Robertson *et al.*, 1996).

The molecular basis of the *Hd* mutation has been shown to be caused by a 50 nucleotide deletion in exon 1 of the *Hoxa13* gene which results in a shortened transcript (Mortlock *et al.*, 1996). *Hoxa13* is expressed at the tip of the limb bud and, together with transcripts of another *Hox* gene *Hoxd13*, becomes confined to the hand/foot plate (Yokouchi *et al.*, 1991). The pattern of *Hox* gene expression in the limb bud is established as a result of positional signaling. In normal limb development, positional signaling involves a cascade of signals produced by posterior mesenchyme in the polarizing region comprising retinoic acid, SHH and BMPs. Outgrowth signals are provided by the apical ectodermal ridge and include FGF4. *Shh* expression in the mesenchyme and *Fgf4* expression in the ridge are mutually maintained during limb bud

outgrowth (Laufer *et al.*, 1994; Niswander *et al.*, 1994). There is evidence that retinoic acid, SHH and BMPs each in concert with FGFs can activate *Hoxd13* expression (Laufer *et al.*, 1994; Niswander *et al.*, 1994; Duprez *et al.*, 1996) and these signals may also activate *Hoxa13* expression initially in posterior distal cells.

Digit reduction in *Hd/Hd* embryos is much more severe than that reported for the *Hoxa13^{-/-}* mouse (Fromental-Ramain *et al.*, 1996) suggesting that *Hd* is not a null allele of *Hoxa13*. Instead the phenotype of *Hd/Hd* mutant limbs is more similar to that of the *Hoxa13^{-/-}/Hoxd13^{-/-}* double mutant (Fromental-Ramain *et al.*, 1996). Hypodactyly is of added interest because of a very recent report identifying a *HOXA13* nonsense mutation in a family with hand-foot-genital syndrome (Mortlock and Innis, 1997). Here we examine the expression patterns of *Shh* and *Fgf4* in hypodactyly limb buds and whether *Hoxd* genes are expressed normally.

Shh and Fgf4 expression

At 11.5 dpc Shh and Fgf4 transcripts are detected in the posterior mesenchyme and apical ridge respectively in limb buds of normal (Fig 1A, C) and Hd/Hd embryos (Fig. 1B, D). Thus the

Abbreviations used in this paper: Hd, hypodactyly; dpc, days post coitum.

*Address for reprints: Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK. FAX: 0171 380-7349. e-mail: ucgasda@ucl.ac.uk

0214-6282/97/\$05.00 © UBC Press Printed in Spain feedback loop which mutually maintains Fgf4 and Shh expression is initiated normally and this is consistent with the normal development of the proximal parts of the limb in mutant embryos. At 12.5 dpc, expression of Shh and Fgf4 is no longer present in limbs of +/+ (Fig. 1I, K) and Hd/+ embryos, but we still detect expression of both genes in the hindlimbs but not forelimbs of Hd/Hd embryos (Fig 1J, L). It is not clear whether this is due to delayed development in the mutant or reflects a consequence of abnormal Hoxa13 product. In other mutants, loss of digits is associated with attenuated signaling of the polarizing region. In the limb deformity (Id) mutant, Shh expression is prematurely terminated and Fgf4 expression is absent (Haramis et al., 1995) and a reduction in Shh expression is also associated with loss of posterior digits in the Wnt7a knockout mouse (Parr and McMahon, 1995). Thus digit loss can result either from changes in signal production as illustrated by the Id and Wnt7a-/- mutants or from changes in response to polarizing signals as seems to be the case for hypodactyly.

Hoxd11 and Hoxd13 expression

The extent of digit reduction in hypodactyly is much more marked than in the *Hoxa13¹⁻* mouse and resembles more closely the phenotype of the *Hoxa13¹⁻/Hoxd13¹⁻* double mutant mouse. One possibility is that *Hoxd13* (and other *Hoxd* genes) is not transcribed in the mutant and we therefore investigated expression of *Hoxd13* and *Hoxd11*. During the time when the distal limb is being patterned, expression of *Hoxd13* is seen in limb buds of both wild-type and mutant embryos. At 11.5 dpc, *Hoxd13* expression in normal embryos is localized to posterior distal mesenchyme as previously described (Dollé *et al.*, 1991; Fig. 1E) and covers approximately 41% of the total distal limb area (Table 1). The limb buds of *Hd/Hd* are much narrower than normal limb buds but the expression domain in *Hd/Hd* (Fig. 1F) appears only slightly reduced when size is taken into account (Table 1). A slight

Hd mutants (compare Fig. 1M with 1N, Table 1).

There is evidence of interactions between *Hox* genes in the same cluster (Zákány and Duboule, 1996) and therefore we examined *Hoxd11* expression in hypodactyly. At 11.5 dpc, *Hoxd11* expression in *+/+* embryos is found in two regions, one distal the other more proximal, both running antero-posteriorly across the developing hand/foot plate (Izpisúa-Belmonte *et al.*, 1991; Fig.1G). However, in *Hd/Hd* embryos, there is only a single region of expression which covers most of the distal limb (Fig.1H) and covers a larger percentage area than that in normal limbs (Table 1). By 12.5 dpc, we can begin to distinguish two domains of *Hoxd11* expression in *Hd/Hd* limbs. These domains are less well defined than in normal buds and the extent of expression appears somewhat reduced (Fig 1O, P).

Our analysis shows that the percentage of the limb bud expressing Hoxd13 and Hoxd11 at 11.5 dpc and 12.5 dpc is slightly altered in the mutant. It seems unlikely that these small alterations in Hoxd gene transcript patterns at these stages would be sufficient to account for the differences in morphology between hypodactyly and the Hoxa13 deficient mouse. However, it cannot be excluded that reduced expression of Hoxd11 contributes to the severity of the phenotype. A human disorder, synpolydactyly, has recently been shown to be caused by a mutation in HOXD13 (Muragaki et al., 1996). Like hypodactyly, synpolydactyly is semidominant and has a more severe phenotype than that of the Hoxd13 deficient mouse (Dollé et al., 1993). A triple knockout of Hoxd11, Hoxd12 and Hoxd13 in mice gives a phenotype that resembles synpolydactyly suggesting that, in the human condition, mutant HOXD13 blocks functioning of other HOX genes (Zákány and Duboule, 1996). A similar explanation could account for the severity of the digit reductions in hypodactyly. Our results show that Hoxd13 is still transcribed in the Hd/Hd mutant but the abnormal Hoxa13 product could interfere with the normal functioning of Hoxd13. This would explain why the severe phenotype of hypodactyly resembles that of the Hoxa13'-/Hoxd13'- double mutant mouse.

TABLE 1.

	11.5 dpc		12.5 dpc	
	+/+	Hd/Hd	+/+	Hd/Hd
Fotal area of distal limb ^a	0.56±0.1 (66)	0.46±0.07 (17)	0.91±0.12 (24)	0.55±0.04 (5)
Area of Hoxd13 expression in distal limb	0.23±0.03 (34)	0.16±0.02 (9)	0.46±0.06 (12)	0.24±0.01 (3)
Area of Hoxd13 expression as % of distal limb	41%	35%	51%	44%
Area of <i>Hoxd11</i> expression in distal limb	0.32±0.07 (32)	0.35±0.06 (8)	0.54±0.14 (12)	0.17±0.21 (2)
Area of Hoxd11 expression as % of distal limb	57%	76%	59%	31%

AREA OF EXPRESSION OF HOXD13 AND HOXD11 IN DEVELOPING LIMB BUDS OF NORMAL AND MUTANT EMBRYOS

^a Area expressed in arbitrary units; number of limbs analyzed in brackets. Note area of distal limb increases much more in +/+ than in Hd/Hd embryos.

736 K.E. Robertson et al.

colour detection, embryos were photographed using a Zeiss SV2 dissecting microscope and attached camera. To estimate area of gene expression as a proportion of total distal limb, individual limbs were dissected away from the body wall and the ventral surface re-photographed and drawn. Distal limb area was measured from the proximal edge of the hand/foot plate at the indentation of the presumptive wrist/ankle. Images were scanned and subsequently analyzed using NIH image analysis 5.8 to obtain a quantitative figure in arbitrary units.

Acknowledgments

We are grateful to Andy McMahon, Gail Martin and Denis Duboule for providing probes and to Ketan Patel and Kate Lewis for helpful advice. This work was funded by the Graduate School, UCL. KER was supported by an MRC studentship.

References

- DOLLE, P., DIERICH, A., LEMEUR, M., SCHIMMANG, T., SCHUHBAUR, B., CHAMBON, P. and DUBOULE, D. (1993). Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75: 431-441.
- DOLLE, P., IZPISUA-BELMONTE, J.-C., BONCINELLI, E. and DUBOULE, D. (1991). The Hox-4.8 gene is localized at the 5' extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. *Mech. Dev.* 36: 3-13.
- DUPREZ, D.M., KOSTAKOPOULOU, K., FRANCIS-WEST, P.H., TICKLE, C. and BRICKELL, P.M. (1996). Activation of *Fgf-4* and *HoxD* gene expression by BMP-2 expressing cells in the developing chick limb. *Development 122*: 1821-1828.
- ECHELARD, Y., EPSTEIN, D. J., ST-JACQUES, B., SHEN, L., MOHLER, J., MCMAHON, J. A. and MCMAHON, A. P. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. *Cell* 75: 1417-1430.
- FROMENTAL-RAMAIN, C., WAROT, X., MESSADECO, N., LEMEUR, M., DOLLE, P. and CHAMBON, P. (1996). *Hoxa-13* and *Hoxd-13* play a crucial role in the patterning of the limb autopod. *Development* 122: 2997-3011.
- HARAMIS, A. G., BROWN, J. M. and ZELLER, R. (1995). The limb deformity mutation disrupts the SHH/FGF-4 feedback loop and regulation of 5' HoxD genes during limb pattern formation. Development 121: 4237-4245.
- HUMMEL, K. P. (1970). Hypodactyly, a semidominant lethal mutation in mice. J. Hered. 61: 219-220.
- IZPISUA-BELMONTE, J.-C., FALKENSTEIN, H., DOLLE, P., RENUCCI, A. and DUBOULE, D. (1991). Murine genes related to the Drosophila AbdB homeotic

gene are sequentially expressed during development of the posterior part of the body. *Embo J. 10*: 2279-2289.

- LAUFER, E., NELSON, C. E., JOHNSON, R. L., MORGAN, B. A. and TABIN, C. (1994). Sonic hedghog and *Fgf-4* act through a signalling cascade and feedback loop to integrate growth and patterning of the developing limb bud. *Cell 79*: 993-1003.
- MORTLOCK, D. P. and INNIS, J. W. (1997). Mutation of HOXA13 in hand-foot-genital syndrome. Nature Genet. 15: 179-180.
- MORTLOCK, D. P., POST, L. C. and INNIS, J. W. (1996). The molecular basis of hypodactyly (*Hd*): a deletion in *Hoxa13* leads to arrest of digital arch formation. *Nature Genet.* 13: 284-289.
- MURAGAKI, Y., MUNDLOS, S., UPTON, J. and OLSEN, B. R. (1996). Altered growth and branching patterns in synpolydactyly caused by mutations in *HOXD13*. *Science 272*: 548-551.
- NIETO, M. A., PATEL, K. and WILKINSON, D. G. (1996). In situ hybridization analysis of chick embryos in whole-mount and tissue sections. In *Methods in Cell Biology* (Ed.M. Bronner-Fraser). Vol. 51. Academic Press, San Diego, pp. 219-235.
- NISWANDER, L. and MARTIN, G. R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114: 755-768.
- NISWANDER, L., JEFFREY, S., MARTIN, G. R. and TICKLE, C. (1994). A positive feedback loop coordinates growth and patterning in the vertebrate limb. *Nature* 371: 609-612.
- PARR, B. A. and MCMAHON, A. P. (1995). Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374: 350-353.
- ROBERTSON, K. E., CHAPMAN, M. H., ADAMS, A., TICKLE, C. and DARLING, S. M. (1996). Cellular analysis of limb development in the mouse mutant hypodactyly. *Dev. Genet.* 19: 9-25.
- YOKOUCHI, Y., SASAKI, H. and KUOIWA, A. (1991). Hoemeobox gene expression correlated with the bifurcation process of limb cartilage development. *Nature 353*: 443-445.
- ZAKANY, J. and DUBOULE, D. (1996). Synpolydactyly in mice with a targeted deficiency in the *HoxD* complex. *Nature* 384: 69-71.

Received: July 1997 Accepted for publication: August 1997