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Catalytic and non-catalytic forms of the neurotrophin
receptor xTrkB mRNA are expressed in a pseudo-segmental

manner within the early Xenopus central nervous system

NAZRUL ISLAM, FRANCE GAGNON and TOM MOSS'

Centrede Recherche en Cancerologie (CRCUL) et Departement de Biochimie, Faculte de Medecine, Universite Laval, Quebec, Canada

ABSTRACT The induction of anterior-posterior and media-lateral patterning within the Xenopus
neural plate leads to the rapid establishment of a functional nervous system. Here we describe two
XenopusTrkB neurotrophin receptor genes which are expressed in discrete sets of neuroblasts during
this developmental process. The xTrkB mRNAs encode both catalytic and non-catalytic receptors and
exhibit membrane-spanning-domain proximal splicing. Expression begins at neural tube closure
within the trigeminal ganglion and within the Rohon-Beard neurons of the dorsal spinal cord,
providing an excellent dorsal marker of early neural tube patterning. Expression occurs later in the
facial ganglia and possibly within the Kolmer-Agduhr neurons. The predominant xTrkB transcripts
within the trigeminal and Rohon-Beard neurons and the exclusive early transcripts of the facial ganglia
encode C-terminally truncated non-catalytic receptors. Such Trk mRNAs have previously been
observed in rodents. However, our observations suggest that they may playa specific role during early
development. Anterior-posterior seg mentation of the neura Itube occurs rostra Ilywithin the prospective
brain, but previous studies have suggested that segmentation does not extend caudally into the spinal
cord. We show that the xTrkB positive Rohon-Beard neurons of the spinal cord do in fact display clear
segmental groupings soon aher neural tube closure. This is consistent with a role for segmentation
in the anterior.posterior patterning of the trunk central nervous system.
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Introduction

The early stages of Xenopus development provide an ideal
model system in which to study development of the vertebrate
central and peripheral nervous systems. Soon after neurulation a
relalively small number of neuron types develop in the CNS and
well before hatching, these neurons have formed relatively simple
bul functional networks (see Roberts, 1989, 1990). Detailed stud-
ies of these networks have provided very plausible explanations for
the behavior of the early Xenopus larvae in response to external
stimuli such as touch, pressure and light. Several genes have been
implicated in the definition of the extent and polarity of the neuroec-
toderm, e.g. noggin (Lamb el al., 1993), follistalin (Hemmati-
Brivanlou et ai, 1994), wnt-l (Noordermeer el al., 1989; Hidalgo
and Ingham, 1990; McMahon and Bradley, 1990) and s-chordin
and BMP-4 (Sasai el al., 1995; Schmidt el al., 1995; Wilson and
Hemmati-Brivanlou, 1995; Xu el al., 1995), and in regulating
neuroblast commitment e.g. xDelta, Xolch(Chitnis etal., 1995) and
NeuroD(Lee el al., 1995). Dorsalinor BMP4/7and hedgehog have
also been shown to regulate the dorsal-ventral patterning of the

neural tube (see Kessler and Melton, 1994; Liem el a/., 1995).
These studies provide major advances in our understanding of the
developing nervous system and describe the choice of motoneu-
ron versus sensory neuron fate. They do not, however, describe
the developmental cues which determine the several different
neuronal fates occurring in the early neural tube. As a step in
identifying these cues, we have cloned and studied the expression
of the Xenopus homolog of TrkB. This neurotrophin receptor
provides an excellent marker of certain early neuronal fates.

The high affinity (gp140-145) nerve growth factor receptors
(NGFRs) form a subfamily of tyrosine kinase membrane receptors
encoded by the Trk group of cellular oncogenes, TrkA, -B and -C
(Barbacid. 1993, 1995; Glass and Yancopoulos, 1993). These
receptors mediate the predominant responses to the neurotrophins
NGF, BDNF and NT-3 and -4. In vilro, TrkA mediates the cellular

A.bbm';fllirJ1lS lord iI/this /m!wr: n:>.IP, bone maturation protein; :\"GF, nern'
growth factor; BD:'\F, brain deri\"(~d neurotrophic factor; :\'T-~, neuro-
trophic factor :'1;~'T -4, neurotrophic f~tCtor4; RT-PCR, reverse transcription-
polymerase ('hain reaction; a.a., amino acid.
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responses to NGF (Hempstead et al., 1991; Kaplan et al., 1991;
Klein et aI" 1991a; Loeb et aI" 1991), while TrkB has highest
atfinityforBDNF and NT-4 (Klein etal., 1991b; Ip etal.. 1993)and
TrkC has highest atfinity for and mediates the cellular responses
to NT-3 (Lamballe etal"1991; Ip etal"1993; Chalazonitis etal"
1994). Cultured maturedorsal root and embryonic cortical neurons
require BDNF (or NT-3) for their survival (Barbacid, 1993; Ghosh
et al., 1994), the former relying on a TrkB/BDNF autocrine loop
(Acheson et aI" 1995), In mouse, inactivation of TrkB is lethal,
leading to severe loss of sensory neurons from both the central
(CNS) and peripheral nervous systems (PNS) (Klein et at., 1993).
Inactivation of TrkA or C causes a less severe phenotype which
atfects predominantly the PNS (Klein et al., 1994; Smeyne et at.,
1994).

In mammals, birds and fish, expression of the Trk receptors
occurs in overlapping patterns throughout the embryonic and adult
nervous system (Heuer et al.. 1990; Klein et al., 1990; Martin-
Zanca et al., 1990; Tessarollo etal., 1993; Yao etal., 1994; Martin
et at.. 1995; Shelton et al., 1995). Within given cells, the Trks are
expressed ina non-exclusive manner,expression of TrkS usually
beingaccompaniedby TrkA orTrkC expression, but rarely ornever
by both (McMahon et al., 1994). Neuroblast commitment and the
differentiation of given neurons are dependent on local auto- and
paracrine-derived, as well as target-derived, neurotrophins (e.g.
see Johnson et al., 1986; Kalcheim et al., 1989; Sieber-Blum,
1991; Miller et al.. 1994). Thus, the development and plasticity of
sensory neurons is the result of a complex balance involving more
than one ligand-receptor combination and both autocrine and
paracrine loops.

Here we present a temporal and spatial study of the onset of
TrkB expression in Xenopus development. The data show an overt
segmentation of the early dsc and suggest non-catalytic forms of
TrkB may playa distinct role in early neuroblast differentiation.

Results

Five cDNA clones (Fig. 1a) were isolated using a 75bp probe
previously obtained by RT-PCR (9732; see Materials and Methods),
Their sequences revealed two highly related xTrk genes. a and~,
and asplicing variantoftheagene (Fig. 1b), TheacDNAs encoded
proteins of 821 or 811 amino acids (aa) containing an obvious
hydrophobic putative membrane spanning domain and a C.terminal
kinase domain. Although the coding region of the ~ cDNAs was
incomplete, the deduced peptide sequence varied only 5% from
that of the a gene, The only possibly surprising ditference between
the a and ~genes was the deletion of serine-525 just N-terminal of
the kinase domain in j}. This residue is otherwise conserved
between species (see Figs, 1band 3).

Interspecies comparisons clearly showed that both the a and 13
genes encoded the Xenopus TrkB homologs (xTrkB) (Fig. 2).
Alignment of the xTrkBa1 sequence with other TrkBs (Fig. 3)
revealed a very high degree of homology throughout the cytoplasmic
domains. The extracellular domains were distinctly less well
conserved. Though no 3D structure exists for the ligand specific
extracellular domain of the Trk receptors, certain polypeptide
motifs have been identified by primary sequence comparisons.
Following the N-terminal signal peptide, several cysteine rich
(cysteine cluster) and leucine rich (LRM) motifs and two
immunoglobulin C2 homology (Ig) domains are found (Fig. 3 and
Schneider and Schweiger, 1991). Recently, it was shown thaf the
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Fig. 1. Two different genes for the Xenopus TrkS homolog. (a) The
organization of the x TrkB mRNA and the 5 cDNA clones from which chis
genera/organization was deduced, (bJ The deduced amino acid sequences
of xTrkBa and -{Jof 827/811 and 820 residues respectivelv. The putative
leader and membrane spanmng pepeides are Indicaeed as is ehe differenrial
splicing of x Trka mRNA leading co Cwo varianr recepeors, xTrk8a 1 and --02.
of 821 and 811 aa, respeceively. Genbank accession numbers U39670-
39672.

C-terminal of the two Ig domains is predominantly responsible for
the ligand specificities of the Trk receptors (Urter et al., 1995).
Consistent with this, Figure 3 shows that of the two Ig domains, it
is the C-terminal, specificity determining one, which is the more
conserved across species.

Differential splicing in the extracellular domain
Two splice alternatives of the extracellular domain of xTrkBa

were isolated during this study (Fig. 1 b), The splicing event
removes 10 a.a. from a short peptide segment between the
membrane spanning domain and the more C.terminal of the two Ig.
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the spliced region to the ligand specificity determining Ig-domain
(McDonald and Chao, 1995; Urfer et a/., 1995), suggests that this
splicing could modulate receptor function in vivo. Analogous splicing
of the TrkA receptor has, in fact, been shown to confer an enhanced
response to NTF-3 (Clary and Reichardt, 1994).

Two major forms of xTrkB mRNA are expressed from stage 21
Two major forms of xTrkB mRNA, a 6.0 kb form corresponding

to the full length cDNA and a 2.9 kb truncated form, were detected
as early as stage21 (Fig. 4b). The 2.9 kb mRNAspecies hybridized
with the extracellular domain (JA) probe, but not with the kinase
domain (X b) probe nor with two probes from the immediate 3'
noncoding region (AH & H). Thus the 2.9 kb mRNA encoded a
kinase-negative or non-catalytic form of xTrkB (xTrkB-tk-) (Fig. 4a).
Such TrkB mRNAs are known to exist in mammals (Klein et a/.,
1991 b; Middlemas et a/., 1991; Shelton et al., 1995) and probably
occur in zebrafish (Martin et al., 1995). Between the 6 and 2.9 kb
xTrkB mRNAs, a broad band of hybridization was also noted in the
region of the 28S rRNA (Fig. 4b). The intensity of this hybridization
was not constant but followed that at the 2.9 kb mRNA form,
indicating that it was not simply due to cross-hybridization with the
28S rRNA. These RNAs hybridized with both the extracellular JA
and the kinase (Xb) probes, but did not hybridize with the immediate
3'.noncoding AH probe. The exact nature of these transcripts must
therefore await a more detailed analysis. However, the situation in
Xenopus is very reminiscent of that in mammals and zebrafish,
where several different TrkB messages, some of around 4 kb, have
been observed.

Fig. 2. Homologies among the Trk family. The deduced prorein sequences
were aligned using rhe program PILEUP (Devereux et al.. 1984). The
sequences were derived from Klein et al. (1989). Lamballe et al. (1997).

Meakin et al. (1992). Dechant et af. (1993). Garner and Large (1993), Martin

et al. (1995) and Shelton er al. (1995).

domains (Figs. 1 and 3). Although similar differential splicing has
been observed for mammalian TrkA and C receptors (Barker et al.,
1993; Shelton eta/., 1995), theonlyotherTrkBforwhich membrane
spanning domain proximal splicing has previously been obseNed
is that of zebrafish (Martin et al., 1995 and Fig. 3). The proximity of

Fig. 3. Alignment of the deduced TrkB
protein sequences. FourrepresentativeTrkB
homologs. Xenopus x TrkBal. chicken GdTrkB
(Dechant et al.. 1993). zebrafish z TrkB 1(Martin
et al.. 1995). and human hTrkB (Shelron et al..
1995). are shown and the major structural
features highlighted (see Schneider and
Schweiger. 1991). The cysteine clusters are
overlined. the leucine rich motifs (LRM) are
brackered. the immunoglobulin C2 (/g-C2)
homologies are underlined and the putative
membrane spanning domain is boxed. The
kinase domain Is indicated by arrows. The
more conserved residues within the Ig-C2
domains are shown shaded and the
me mbr an e- spann in g-domain-adjacen t
splicing is shown hatched.
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taken from the sequences immediately flanking the AH probe. A cONA
reaction was prepared for each RNA uSing the 3' oligonucleotide. Each
cONA preparation was then divided in aliquots of 1part, 2 parts and 4 parts
and all aliquots subjected to 15 cycles of PCR in parallel, After separating
the PCR products by agarose gel, they were blotted and the resultant
membrane was hybridized with the AH probe.

Semi-quantitative RT-PCR showed that the full length xTrkB-
tk+ message increased in concentration gradually and by about 4-
fold, from stage 21 to stage 36. then by about a further 2-fold to
stage 40/45. Le. about 8-fold in all from stages 21 to 45 (Fig. 4d).
Northern analysis showed that the 2.9 kb xTrkB-tk' mRNA
predominated from stages 21 through 30. while at later stages the
tk- and tk+ mRNA forms were equally expressed. The earliest
neurons begin to differentiate at neural tube closure, stage 20 or 21
and by stage 33/34 they form part ot a functional network which
remains essentially unchanged until stage 36/37 (Hughes, 1957;
Nieuwkoop and Faber, 1967; Hartenstein, 1993). The xTrkB-tk-
mRNA therefore predominates during the differentiation of these

neurons and expression of the tk+ form becomes significant only
as the first neurons become fully differentiated. The large increase
in mRNA concentration seen at, and subsequent to. stage 40
corresponds with the differentiation of the many retinal neurons
(Cohen-Cory and Fraser, 1994).

xTrkB expression first occurs in the trigeminal and early
dorsal spinal cord

In situ whole-mount hybridization revealed that the xTrkB
message is first expressed at stage 21/22 within the trigeminal
ganglia (tg) and the dorsal spinal cord (dsc) (Fig. 5). (As with both
Northern and RT-PCR analyses, attempts to detect expression at
earlier stages were consistently negative). The dorsal tip of the
developing trigeminal ganglion (tg) hybridized strongly at stage 21-
23 and weaker hybridization was noted throughout the ophthalmic
and maxillary/mandibulary branches of the tg (Figs. 5a.b and 6a).
At the same stages. expression was also evident in two rows of dsc
cells (Fig. 5a,b and c). Hybridization in the dsc became more
extensive by stage 24, spreading caudally (Fig. 6d). By stage 33/
34 xTrkB mRNA was found throughout the dsc with the exception
of the tail bud (Fig. 5e and f). It was also present in the hindbrain
as far rostral as rhombomere 6 or 7 (see Fig. 6 and below). xTrkB
expression in the tg did not become more extensive at the later
stages, but it did become more intense.

xTrkB positive crania/ neurons at stage 33/34
The major cranial nerves ot the stage 33/34 embryo are

summarized in Figure 6a. The majorxTrkB positive cranial ganglion
at this stage could be unequivocally identified from its positioning
in both lateral views and in transverse sections as the tg (Fig. 6b
and d). The ophthalmic and maxillary/mandibular branches, which
encompass the eye cup. respectively, dorso-anteriorly and ventro-
posteriorly, were very well defined in lateral views and in transverse
section hybridization occurred at mid eye cup. At earlier stages
(Fig. 5a to d), it was also noted that, as expected for the tg. xTrkB

hybridization first occurred in two anterior cranial branches which
subsequently moved caudally.

The tg contains at least two sensory neuron types. the pressure
receptors in the head skin and cement gland which inhibit swimming
and the touch receptors in the head skin which excite swimming
(Roberts and Blight, 1975: Hayes and Roberts. 1983). Single
somata could be identified in the tg by the exclusion of xTrkB
staining trom their nuclei (Fig. 6c) and the density of staining
suggested that most tg neurons expressed xTrkB. xTrkB
hybridization was also systematically observed in one isolated cell
(in optical sections actually one cell on either side of the midline),
lying within the anterior hindbrain, dorsal of the entry of the
trigeminal nerve and within orciose to rhombomere 2 (as determined
by parallel whole.mount Krox20 hybridizations to identify
rhombomeres 3 and 5: Papalopulu et al., 1991). The position ofthis
cell corresponds to one of the two central trigeminal somata which
lie either side of the midiine. Subsequent to stage 30, hybridization
also occurred at the dorsa-anterior boundary of the otic vesicle and
extended a short way antero-ventrally parallel to the maxillary/
mandibulary branch of the tg (Fig. 6b and c). This hybridization
identified the developing Vllth or facial ganglion which traverses
the region (Fig. 6a). Other sensory cranial nerves present at stages
30 onwards such as the tanabin positive glossopharyngeal ganglion
(gg), the vagus ganglion (vg) and the lateral line (LL) ganglia
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Fig. 5. Spatial expression of xTrkB in Xenopus laev;s embryos. la,b,d, and e) Lateral views of cleared embryos at stages 21/22.22/23.24 and 33/
34. respectively. Ie) Dorsal view of uncleared stage 21/22 and 22/23 embryos. (f) Dorsal view of cleared stage 33134 embryo. The early dorsal spinal cord
(dsc) and trigemmal ganglia (tg) are indicated. Shadedarrows indicateregularity in the patterns of expression wIthin the dsc at the earlierstages.

(Hemmati-Brivanlou et al.. 1992), as well as the vestibular nerve or
the Mauthner cells (found at the same level of the vestibular nerve
and implicated in the startle response of amphibians and fish). did
not hybridize. (Staining within the otic vesicle itself was very
variable, compare Figs. 6 and 8, and was probably due to probe
captured non-specifically in the vesicle). It was concluded that, to
stage 33/34, the major cranial neurons expressing xTrkB lie within
the tg and fo a lesser extent the fg and hence all have their origins
in the neural crest (see Gilbert, 1994),

The xTrkB positive cells of the dsc correspond to the Rohan-
Beard cells

By stage 33/34, eight different types of neurons are present in

the Xenopus spinal cord (Fig. 7a). The trunk skin is innervated by
transient neurons which initiate swimming in response to touch.

These neurons are called Rohon-Beard (R-B) cells and have
characteristically large somata. Each R-B cell has a peripheral
process which penetrates between the myotomes to innervate the
skin as well as ascending and descending axons. Unlike the tg
cells, the R-B cells originate directly from the neural ectoderm.
Whole-mount in situ hybridization resolved the somata of the
individual spinal cord neurons and in many cases it was possible
to discern that the hybridization was cytoplasmic (Fig. 7b and
inserts). The large xTrkB positive dsc cells appeared in lateral and
dorsal views (see Figs. 5, 7b and c and 8) to lie near the dorsal
surface of the neural tube. It was therefore likely that they

corresponded to R-B cells. To verify their transverse position,
whole-mount hybridized embryos were imbedded in wax and
sections taken throughout the trunk region (e.g. Fig. 7c and d),
Strongest xTrkB hybridization occurred within the superficial dorsal
cells of the neural tube, identifying these cells predominantly or
exclusively as R-B neurons. Some hybridization was also seen at
a more lateral position (Fig. 7d), possibly corresponding to the
position of dorsolateral interneurons. However, the number of
xTrkB positive cells per somite segment, estimated here as 4 to 6
per ganglion at mid-trunk (Fig, 7f) was very close to the 6 to 8 R-
B cells per ganglion determined using an anti-acetyl-tubulin antibody
(Hartenstein. 1993). Thus. the xTrkB positive dsc cells were
probably all R-B cells. Rare staining was also noted in cells
attached to the dorsal surface of, but not within. the neural tube
(data not shown). These cells probably represented examples of
extramedulary neurons, most probably a rare subclass of R-B cells
whose somata have migrated out of the neural tube (Roberts,
1989).

In most whole. mount samples it was possible to discern weak
but clear xTrkB hybridization within ventral neural tube cells (Fig.
7b). It was unlikely that this was due to cross-hybridization with
xTrkA or -C mRNAs, since hybridization occurred with both the
extracellular (JA) and the 3'-noncoding (H) probes (see also
Figures 4a and 8). The ventral xTrkB positive cells most probably
represent either motoneurons or Kolmer-Agduhr (K-A) sensory
neurons (see Discussion).
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a) Ig somata
central tg soma

MB r2 r8
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Fig. 6. Expression of xTrkB in the cranial ganglia at stage 33/34. (al
Diagram indicating the major cranial sensory nerves. The approximate

extents of the trigeminal Nth) ganglion rtg}, facial (VI/th) gang/ion ((g), the
vestibularor acoustic (VJJlth)nerve (vn), the glossopharyngeal (lXthJ ganglion
(gg), the vagus (Xth) ganglion and the latera/line ILL) are indicated by
chequered shading. The regions positive for xTrkB are shown in black. The
ophthalmic (og), maxillary (mx) and mandibulary (mdJ branches of the tgare

also indicated as are the fore (FB), mid (MBJ, and hindbrain (HB) regions. the
rhombomeres (r2. r4 ete), the eye cup (ee) and the otic vesicle fovl. (b and
enlargemenr in cl Lateral view of the head region of a stage 33/34 embryo
hybridized with a mixture of JA and H probes (see Fig. 4). (d) Lateral cross-

section though the mid-brain. eye region of a stage 33/34 embryo after in
situ. whole-mount hybridization. Hybridization in the tg is seen above and
below the eye cups (ec). Note in (b.c and dl staining within the brain and
otic cavities was very variable between samples and is most probably
artlfactual staining due to a non-specific sequestration of probe. For

example in Idl staining within the brain cavIty occurs only at the inner cavity
surface. not within the brain tissue.

Expression afxTrkB-ttc+ and-tl< mRNAs most probably occurs
In the same tg and R-B cells

Little or nothing is known of the function of the non-catalytic or
tk- forms of TrkB. Northern analysis (Fig. 4b) showed that the tk-
mRNA predominated during neuronal differentiation. This suggested
that either non-catalytic receptors play a special role during
differentiation or their expression is neuron specific. We therefore
determined the spatial distributions of the tk+ and tk- mRNAs.
Whole-mount hybridization performed with the JA probe detected
both the tk+ and tk- messages while the 3'-noncoding region probe
H detected only the tk+ message (see Fig. 4). Since the tk- mRNA
predominated from stage 21 through stage 30, mixed probe
hybridization in the tg and dsc at these stages (Fig. 5a-d) suggested
that tk- mRNA may be present in one or both of these ganglia.
Throughout these stages the separate JA and H probes were also
shown to hybridize to both the tg and the R-B cells contirming that
the tk+ and Ik- mRNAs most probably existed in both cell types
(data not shown). At stage 33/34 little difference in the tissue
distribution of xTrkB hybridization was detected with the two
probes, each probe staining the tg, the R-B cells and weakly some
ventral spinal cord (Kolmer-Agduhr) cells (Fig. 8). The number of
xTrkB.positive R.B cells per somite segment was found to be

b)
.

· f ,

.

.. ~

c) , central tg
,

essentially the same whether the JA, H or a combination of these
two probes was used (e.g. compare Figs. 5e,f and 8). Hence. at
both early and late stages of R-B and tg neuroblast differentiation
it is possible that the same cell types express tk+ and tk- mRNAs.

In contrast to the probable overlap of tk+ and tk- mRNAs in the
tg and dsc, hybridization within the developing facial ganglion (tg)

at stage 33/34 (Figs. 6 and 8) showed a very distinct dependence
on the probe used. Fg hybridization was tirst noted around stage
30 (data not shown), corresponding roughly with neuroblast
commitment in this ganglion, and was seen only with the JA probe
(compare Fig. 8a and b). Thus, at least until stage 33/34 the
developing Ig exclusively expresses the tk- mRNA form.

Segmentation of the dsc
An important question in studies of spinal cord development is

whether or not neuron positioning reflects the segmentation of the
embryonic trunk. If so, is neuroblast commitment regulated by
molecular cues similar to those which lead to the rostro.caudal
segmentation ot the embryo, as is the case in insects (Bate, 1976;
Hartenstein and Campos-Ortega, 1984)? Data supporting the idea
of a segmental arrangement of primary neurons has been obtained
in zebra fish (Myers, 1985; Metcalfe etal., 1986; Bernhardt etal.,



Fig, 7. Expression of xTrkB within the dorsal spinal cord. la) Diagrammatic

representation of the 8 neuron types (after Roberts, 1990). R-B, the Rohon-Beard
sensory neurons, K-A, Kolmer-Agduhr or ciliated ependymal neurons, de and da
respectively, the dorsolateral commissural and dorsolateral ascending interneurons, a,
d & c, respectively ascending. descending and commissural interneurons and mn, the
motor neurons which mnervate the myotomes.lb) Detail of the xTrkB e,xpression in the
neural rube of a stage 33/34 embryo. A lateral vlewof the region between somites 4 and
9. post-otic, is shown with insets at 2x higher magnification; anterior is to left, dorsal up.
The position of the neural rube, nt, is Indicated. (c and d) Transverse cross-sections taken at mid-trunk after whole-mount hybridization. The notochord,
nc, neural tube. nt, and somltes. s, are indicated. lei Lateral view of an uncleared embryo showmg the relative positions of somire segmenrs and TrkB
posirive cells, anterior is to lefr, dorsal up. If) Analysis of rhe numbers of x TrkB-positive dsc celfs within different segmenrs. Numbers are given per
segment. per side and somites are idenrified by their number post-otic. HB refers to the hindbrain region. Open circles indicate data from 4 embryos (6
counted ganglia) at stages between 30 and 34 while solid squares give data from a single stage 24 embryo. The shaded area indicates the standard
deviation of the stage 30 to 34 data.
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1990). However, work in other vertebrates suggests that no overt
segmentation of neurons occurs in the embryonic spinal cord
(Keynes and Lumsden, 1990; Um etal., 1991; Hartenstein, 1993).
To some extent our data was in agreement with these latter studies
in that it showed R-B cell positioning within each segment to be
highly variable. At the same time the data showed a very obvious
tendency for R-B cells to form segmental groupings (see Figs. 5e
and f, 7b and 8). These segmental groupings of R-B cells
corresponded to the segmentation of the adjacent somites (Fig.
7e).

The anterior 8-9 somites of the Xenopus embryo are first
segregated at stage 21/22 whiie the anterior 15 are segregated by
stage 24. At first sight, xTrkB-positive cells appeared randomly
positioned at these stages (Fig. 5a to c). However, with closer
inspection of these and other images, it became evident that some

preference for R-B cell positioning probably existed even at very
early developmental stages. For example, in Figure 5b and d,
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groupings of xTrkB positive neuroblasts are just apparent in the
rostral and mid-trunk regions. This paherning is more obvious in
the dorsal view of an uncleared stage 22/23 embryo shown in
Figure Sc. In the original sample staining could be seen to correspond

with the somite repeat. Hence, though the distribution of xTrk
positive cells is more variable in the early dsc than it is at later
stages, some underlying patlerning probably already exists.

Discussion

As a step towards understanding early neuroblast differentiation
and CNS patlerning in the Xenopus system, we have cloned and
studied the temporal and spatial expression of the Xenopus
neurotrophin receptor TrkB (xTrkB). Two xTrkB genes, -(1 and -p,
encoding pOiypeptides differing by only 5%, were isolated and their

transcripts were shown to be subject to at least two different
splicing events. The first event spliced a 30 nucleotide putative
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Fig. 8. Comparison of stage 33/34 embryos
hybridized with probes detecting {al the catalytic
and non-catalytic (JA, tk+.tk-)and(bl only the catalytic

rH. tk+) forms of the xTrk,8 mRNA. Both lateral and
dorsal \'ieW5 are shown for each embryo. The inser
shows a higher magnification of the trigeminal and
facial ganglion regions and the arrow indicates in la) rk-
mRNA wirhin the facial ganglion and in (bl the
presumed region of the facia! ganglion ina tk+ stained
embryo. Differences in staining of the anterior crania!
regions and otic vesicle between whole-mount
samples were observed (e.g. compare Fig. 8a and b
with 6bJ. These differences did not correspond to
discrete celfular staining nor did they correlate wIth
given probes and were most probably due to non-
specific staining in cranial cavities.

membrane spanning domain adjacent segment of possible
importance in ligand specificity (Clary and Reichardt, 1994;
McDonald and Chao, 1995; Urfer et al., 1995), while the second
produced an mRNA encoding a non-catalytic (tk-) receptor.
Expression of the xTrkB mRNAs began at stage 21 in the tg and the
R-B cells of the dsc ganglia and corresponded with both neural tube
closure and early neuroblast differentiation (Nieuwkoop and Faber,
1967; Hemmati-Brivanlou et al., 1992). Expression was therefore
observed in cells of both neural tube and neural crest origin, but
was limited to a small subset of embryonic sensory neurons.

Somewhat surprisingly, we found that the noncatalylic, tkO,
xTrkB mRNA predominated during the early stages of neuronal
differentiation. Between stages 30 and 33134 the developing fg
exclusively expressed thetk- mRNA. Thus, predominant or exclusive
expression of a xTrkB-tk- mRNA may correlate with neuroblast
differentiation. To our knowledge, such a correlation has not
previously been made. Itis, however, consistent with the observation
of a potential tk- TrkB mRNA in early mouse embryos (Klein et al.,
1989). Expression oftk- TrkB has also been correlated with axonal

sprouting inthe adult hippocampus (Beck etal., 1993). Tk- receptors
may function to concentrate, sequester or limit the distribution of
growth factors. The exclusive or predominant expression of a tk.
receptor might then aid in the differentiation of discrete neuron
groupings such as those of the Xenopus R-B cells. By analogy with
the Drosophila Trk homolog, it is possible that tk- receptors could
also function as cell adhesion molecules and hence playa role in
axon guidance (Pulido et al., 1992). The availability of the xTrkB
gene will allow us to test some of these possibilities in vivo.

Strong expression of xTrkB in the R-Bcells provides an excellent
marker of dorsal.ventral patterning of the neural tube. However, in
most whole-mount samples a weak but clear xTrkB hybridization
was also observed within ventral neural tube cells. (e.g. see Figs.
7b and 8). Since TrkB expression during early development is
generally associated with sensory neurons, it is possible that the
xTrkB positive ventral spinal cord cells correspond to Kolmer-
Agduhr (K-A) neurons. These are the only ventral sensory neurons
in fhe embryonic neural tube (see Fig. 7a). Further, the density of
the xTrkB positive cells roughly corresponded to that expected for



K-A neurons, i.e. 2-5 cells per segment per side (Roberts, 1989).
The K-A neurons or ciliated ependymal cells have sensory cilia
which penetrate the neural canal, their function is, however,
presently unknown. It is also possible that the weak ventral xTrkB
expression may be occurring within motoneurons, in which case it
could be associated with early programmed cell death (McKay et
al., 1996).

Segmentation of the developing CNS is a possible means of
achieving correct neuron positioning and neuroblast induction is
clearly controlled in a segmental manner in insects (Bate, 1976;

Hartenstein and Campos-Ortega, 1984). Antibody staining and
HRP backfilling studies in zebrafish have suggested a segmental
pattern of spinal cord motor neurons and reticulospinal hindbrain
neurons (Myers, 1985; Bernhardt et al., 1990). However, most
other studies of the vertebrate embryonic CNS have failed to reveal
an obvious segmental positioning of neurons, (see Keynes and
Lumsden, 1990; Lim et al., 1991). In particular, anti-acetyl-tubulin
and HRP-backfilling studies have suggested that segmentation of
the spinal CNS may not occur in Xenopus (Hartenstein, 1993). In
contrast, whole-mountxTrkB hybridization revealed clear segmental
groupings of dorsal spinal cord (dsc) neurons. Our data do agree
with the previous work in that the exact positioning of specific xTrkB
positive R-B neurons varied between segments, between ganglia
and also between individuals. However, this variability did not
mask overt groupings of R-B neurons. The segmental groupings
most probably appear concurrently with the formation of the
so mites, very early during neuroblast differentiation. Thus, our
data leave open the possibility that the positioning of dsc neurons
is subject to segmental cues similar to those which induce
segmentation of the so mites themselves.

Materials and Methods

Embryos were produced by in vitro fertilization (Newport and Kirschner,
1982) and were staged according to Nieuwkoop and Faber (1967).

Cloning and sequencing
Two initial TrkB cONAs were isolated from a Xenopus /aevis brain

derived Agt10 cONA bank prepared by K. Richter and kindly provided byT.
Sargent. In order to obtain complete cDNAs, a further ).gt10 cDNA bank

was established using a degenerate primer to kinase domain IX (Hanks et
al., 1988; Hanks and Wuinn, 1991; Islam et al., 1994). Screening of both
cDNA banks was pertormed in 50% formamide, 5xSSC, 5xDenhardt's, 100
Ilg/mr1 of torula RNA (Sigma) at 42"C using riboprobes transcribed from

the 75bp RT-PCR clone Xltk5 (Islam et al., 1994). After hybridization
washing consisted of two washes in 6xSSC and two washes in 2xSSC at
42~C for 15 min each. The filters were then treated with RNase A, 20 Ilg/
ml-1, and RNase T1, 10 u/ml-1, in 2xSSC at 37"C for 30 min before further

washing in 0.5xSSC, 0.1 % SOS at 55"C for 30 min. After subcloning, the

cDNA sequences were established using a combination of Exo III deletion
(Pharmacia) and specific priming.

mRNA expression analyses
RNA was isolated from staged embryos using guanidinium isothiocyanide

and LiCI precipitation (Cathala et al., 1983). Northern blots were prepared
from formaldehyde gel separations (Brown, 1987) and hybridization was
pertormed using antisense riboprobes. Hybridization was performed in
5xSSC, pH 6.0, 50% formamide, 5xDenhardt's, 100 Jlg/mr1 torula RNA
(Sigma) at 60DC. The blots were then washed twice in 6xSSC and twice in

2xSSC at BO"C, 15 min each and finally once or twice in 0.2xSSC for 30 min

at 65cC (probe JA) or at 70"C (probes AH & H). Semi-quantitative RT-PCR

was carried out, using the 5' primer; 5'TTGAT ATCCTTGGCT AA and the 3'
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primer 5'ACAAGAGAGTCA TGGCA, homologous to the xTrkB 3' non-
coding region sequences flanking probe AH. 10 Jlg of total RNA from the

various embryo stages was reverse transcribed using 37 ng of 3' primer.

The cDNA was recovered in 36 JlI of 10 mM Tris, 1 mM EDTA, pH 8.3 (TE).
Aliquots of 1, 2 and 14 JlI were then PCR amplified, using 50 pMoles each

of the 5' and 3' primers in a 100 III reaction, through 15 cycles of 1 min at

94.5"C, 30 sec at45"C and 30 sec at n"c. One tenth of each reaction was
electrophoresed on 1.5% agarose, transferred to Hybond N (Amersham)

and the resulting blots hybridized with probe AH and washed as for cDNA
bank screening (see above). Probe JA was derived from xTrkBa and
probes AH and H from xTrkBp. The equivalent AH and H sequences
differed by only 1.5 and 7%, respectively, between the two xTrkB "pseudo-
allelesn.

In situ hybridization
Whole-mount in situ hybridization was carried out on albino X. laevis

(Nasco) as described (Hemmati-Brivanlou et al., 1990; Jowett and Lettice,
1994) with some modifications to avoid the need for manual removal of the
vitelline membrane from pre-hatching stage embryos (Islam and Moss,
1996). Sectioning was carried out after whole-mount hybridization by
standard paraffin embedding.
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