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ABSTRACT The origins of metazoan bodyplans and the extent to which they are coincident with

the Cambrian “explosion” are both areas of continuing debate. The fossil record has a unique

advantage in terms of historical perspective, but remains highly contentious on account of the often

controversial interpretations of particular groups (e.g. halkieriids, vetulicolians) and the heavy

reliance on “windows” of exceptional preservation (e.g. Chengjiang, Burgess Shale). Molecular and

developmental biology offer other unique insights, but may be problematic in terms of conflicting

phylogenetic signals and questions revolving around gene co-option, evolution of developmental

systems and even convergence. Such topics, far from frustrating the enterprise, actually widen our

understanding of the nature of the evolutionary process with the exciting promise of the discovery

of more general principles.
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Introduction

While in his triumph Caesar acknowledged the cheering crowds
and basked in the reflected glory of Rome, a slave would periodi-
cally remind him of his mortality. So too, perhaps, when we
acknowledge the triumphs of evolutionary biology we might also
recall that acclamation and apparently immovable edifices can be
surprisingly temporary. To maintain this creaking metaphor how
might we expect the landscape of the evolutionary “city” to change,
and from an historical perspective should we persist in the view that
evolution is, to paraphrase, “one damn thing after the other” or
rather does it show definite directions (e.g. Knoll and Bambach,
2000), if not a “manifest destiny” (Conway Morris, 2003). Whilst this
review will very much deal with the inter-relations of palaeontology
and molecular biology in the context of the Cambrian “explosion”,
I should emphasize that ultimately like any other aspect of biology
it can only command interest in as much as it remains relevant to
our understanding of evolution. So further, I would argue, evolution
only comes to age when there is a specific assessment of the
substrate of possibilities (and constraints) upon which it can act.

The areas of developmental biology, bodyplan evolution and
palaeobiology bring these problems into sharp focus, not least in
the still unresolved questions of: (i) “molecules versus morphol-
ogy”, that is exactly how do complex phenotypes emerge from the
molecular substrate?, a question of some interest given the con-
servatism of at least some developmental genes; (ii) what I call
“inherency”, whereby much of the potentiality of structures central

to evolutionary advancement, e.g. mesoderm, neural crest, are
already “embedded” in more primitive organisms, (iii) the phenom-
ena of convergence (Conway Morris, 2003), and to some the
unsettling question of the repeated recruitment of similar gene
arrays to form complex structures that emerge independently of
one another; (iv) the extent to which supposedly conserved genetic
architectures allow inferences of ancestral form (e.g. Erwin and
Davidson, 2002; see also Holland et al., 2003); and finally (v) how
much, and as importantly why, do developmental mechanisms
themselves evolve?

These questions define an ambitious research programme, and
it is necessary first to review very briefly our present understanding
of metazoan evolution in the contexts of the geological time-scale,
bodyplan construction, and phylogeny. Where then do we stand?
Estimates of the timing of metazoan originations have oscillated
wildly, from claims of very ancient divergences (e.g. Wray et al.,
1996; Bromham et al., 1998) to values that are far more concordant
with the fossil record (e.g. Ayala et al., 1998; Ayala, 1999; Avis-
Brosou and Yang, 2002; see also Rodriguez-Trelles, 2001, 2002).
Comparable test cases can be found in many other groups,
including birds, mammals and vascular plants. In each case there
is a clear dichotomy of interpretation, but overall the evidence
appears to be tending towards the notion that to the first approxi-
mation the fossil record is reliable (e.g. Foote et al., 1999; Adkins
et al., 2001; Gaunt and Miles, 2002; Huchon et al., 2002; Soltis et
al., 2002; Benton and Ayala, 2003). It seems, therefore, that those
who argue for deep originations combined with convenient evolu-
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tionary crypsis are engaged in a mis-reading of the molecular and
palaeontological evidence.

In the case of metazoan originations, if the fossil record provides
an approximately reliable historical narrative this obviates the need
to appeal to effectively unfossilizable forms. Such have been
conjured up in a variety of forms, notably as either a meiofauna
(e.g. Fortey et al., 1996) or planktonic larvae with maximally
indirect development (e.g. Davidson et al., 1995). As such these
types of organism would remain palaeontologically “invisible” until
transformed by the respective expedients of body-size enlarge-
ment (in meiofauna) and invention of “set-aside” cells (in larvae).
The substantial difficulties with either of these hypotheses are
reviewed elsewhere (e.g. Conway Morris, 1998a, 2000a,b; Budd
and Jensen, 2000).

Notwithstanding these questions, and the muted response to
them, there is a parallel activity in the form of periodic announce-
ments of putative trace fossils (i.e. tracks, burrows and other signs
of animal activity), often dating in excess of a billion years (e.g.
Breyer et al., 1995; Seilacher, 1998; Rasmussen et al., 2002). This
too supports a lively industry of claim and refutation. Whilst an
attempt to call a moratorium on this area is futile, the sceptical view
is that: (i) these ancient “traces” are typically highly restricted in
distribution and sometimes only known from a single slab of rock;
(ii) no explanation is offered as to the failure of the “organisms” to
diversify in what would otherwise appear to be an ecological
“vacuum”; (iii) the structures in question are almost all remarkably
different from one another; (iv) all other evidence (e.g. Logan et al.,
1997) points to a “microbial world” uneffected by a putative macro-
scopic ecology; and (v) the important fact that even in late
Neoproterozoic sediments yielding exquisitely preserved soft-
bodied algae, there is no corresponding preservation of meta-
zoans (Xiao et al., 2002). It is only fair to point out that much older
candidates for metazoan body fossils do exist (reviewed in Fedonkin
2003), but in all cases detailed comparisons are suspect. In
particular specific claims, such as a similarity to annelids, are
questionable, although the possibility that some taxa are represen-
tatives of fungal-metazoan stem-groups (see below) is certainly
worth entertaining. In any event, each and every claim requires
exceptional scrutiny, in the spirit of Cloud (1986), not least in terms
of exact geological age and biological affinity (if not biogeneticity).

Metazoan evolution: first steps

Here I will proceed on the assumption that: (i) metazoans did not
originate much earlier than c. 700 Ma; (ii) their effective record
begins c. 600 Ma within the Ediacaran assemblages, and (iii) the
Cambrian “explosion” is synonymous with much of triploblastic
diversification. The following outline can only be whet the imagina-
tion and is also highly selective, if not idiosyncratic. To provide first
a perspective of earth history it needs to be stressed that the roles
of forcing factors, notably global glaciations (e.g. Hoffman and
Schrag, 2002), are controversial. Thus in this particular example
despite arguments that “Snowball Earths” imposed major evolu-
tionary bottlenecks, the contrary evidence in the form of: (i)
significant pre-glaciation eukaryotic diversity; (ii) the likelihood of
biological oases during glaciation (including perhaps an ice-free
equatorial zone; e.g. Hyde et al., 2000; Poulsen, 2003); (iii) an
active hydrological cycle (e.g. Kellerhals and Matter, 2003); and,
(iv) most tellingly, the discovery of complex microbiotas coeval with

the glaciations (Corsetti et al., 2003; see also McKay, 2000),
suggest that while the evolutionary effects of “Snowball”, or prob-
ably “Slushball”, Earth were significant they were not catastrophic.

Whether these, or other environmental drivers such as atmo-
spheric oxygen (Canfield and Teske, 1996; Shen et al., 2003), had
important evolutionary consequences will become more apparent
not only with improved data, such as stratigraphic correlations and
refinement of geochemical proxies (e.g. Jacobsen and Kaufman,
1999; Evans, 2000; Lund et al., 2003), but also by exploring new
metazoan phylogenies (e.g. Giribet, 2002). Here some spectacular
advances in our understanding need to be set against other areas
that have remained refractory. The latter include both interpretations
of fossil material, especially the Ediacaran assemblages, and lack of
present evidence for key transitions, notably the transformations
involving those between diploblast-triploblast, protostome-deuteros-
tome, and ur-chordate-vertebrate. While the combined strengths of
molecular biology and palaeontology give reasons to be optimistic,
it is also worth recalling that (i) effectively unfossilizable organisms,
perhaps like Symbion (Winnepenninckx et al., 1998); (ii) extinct
major clades, perhaps like the petalonamids (Grazhdankin and
Seilacher, 2002), and most importantly (iii) evolving developmental
systems (see below), mean that some evolutionary questions may
remain intractable for the foreseeable future.

Nevertheless, at the least the emerging framework will help to
pinpoint new questions. While the Fungi are widely regarded as the
sister-group of Metazoa (e.g. Baldauf, 1999), more specific hy-
potheses of the phylogeny of this group and its closest relatives
(e.g. Atkins et al., 2000; Cavalier-Smith and Chao, 2003) ultimately
may indicate which key novelties, such as receptor systems or cell
binding (e.g. Morris, 1993; Schütze et al., 2001) underpin meta-
zoan success. As long thought the choanoflagellates may be the
nearest living equivalent to a pre-metazoan (e.g. Snell et al., 2001).
Both their molecular equipment (King and Carroll, 2001) and also
evidence for very early episodes of gene duplication (Miyata and
Suga, 2001), possibly roughly coincident with the choanoflagellate-
poriferan split, may help to define the groundfloor of metazoan
evolution.

As pointed out by Medina et al. (2001) a resolution of sponge,
cnidarian and ctenophore relationships is still problematic, al-
though their suggestion of a possible Calcarea-Eumetazoa (see
also, for example, Kruse et al., 1998; Borchiellini et al., 2001) and
Cnidaria-Bilateria connection are both important, if controversial.
The continuing problems in the phylogenetic resolution of these
major groups were stressed by Manuel et al. (2003), although their
suggestion that the axial symmetry of some Calcarea might be
plesiomorphic to the Metazoa is certainly intriguing. The molecular
insights to metazoan phylogeny are of crucial importance, but it is
still necessary to reiterate the point that given the disparity of these
groups (or any other superclade, not least the deuterostomes; see
below) the molecular data are necessarily silent as to the anatomy,
function and ecology of the various stem-groups and common
ancestors.

Consider first the sponges, which present many problems.
Despite lacking a nervous system, but interestingly possessing
neuronal-like receptors (Perovic et al., 1999), and effectively
showing an absence of other tissues, sponges show considerable
sophistication, not least in the evolution of carnivory (e.g. Kübler
and Barthel, 1999) and their ability to sequester cnidarian nemato-
cysts (Russell et al., 2003). In addition, whilst their early geologic
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appearance, established on the basis of body fossils (Gehling and
Rigby, 1996), spicules (Brasier et al., 1997) and chemical fossils
(e.g. McCaffrey et al., 1994), is consistent with their primitiveness,
apart from some embryological hints (Leys and Degnan, 2002) the
details of the presumed transformation to a diploblastic organiza-
tion are effectively conjectural. Here is one transition that may have
been effectively microscopic and larval. In this sense the Placozoa
(i.e. Trichoplax) is perhaps our best guide amongst living animals
(e.g. Syed and Schierwater 2002; Ender and Schierwater, 2003; cf.
Cavalier-Smith and Chao, 2003) to the first Eumetazoa, although
a yet more primitive position is also possible.

Amongst the key innovations of the cnidarians is the nervous
system (e.g. Grimmelikhuijzen et al., 2002), culminating in such
features as the remarkable nerve ring in some species in Hydra
(maintained, incidentally, despite the dynamic displacement of
cells; Koizumi, 2002; Fig. 10) and the extraordinary camera-eye
bearing cubozoan jellyfish (e.g. Martin, 2002; see also Conway
Morris, 2003). The now widely-accepted basal position for the
anthozoans (e.g. Bridge et al., 1995; Odorico and Miller, 1997; see
also Müller et al., 2003) may be congruent with the abundance of
pennatulacean-like fronds in the Ediacaran assemblages (e.g.
Jenkins and Gehling, 1978; Narbonne and Gehling, 2003), as well
as the identification of possible Cambrian “survivors” (Conway
Morris, 1993; Jensen et al., 1998). It is quite possible, however, that
the Ediacaran “fronds” are polyphyletic (D. Grazhdankin pers.
comm.), and even if some are anthozoan cnidarians, a place in the
Pennatulacea per se is open to debate (Williams, 1997).

It is equally likely that at least some of the other Ediacaran
fossils, including the sac-like Inaria (Grazhdankin, 2000), are of
diploblast, if not a cnidarian, grade. Whether there were any
genuine “jellyfish” is much more conjectural. Kimberella, once
interpreted as a possible cubozoan, is now reconstructed as a
mollusc-like animal (Fedonkin and Waggoner, 1997). The fate of
the possible chondrophorine (Hydrozoa), Kullingia, is even more
extraordinary, because this strikingly concentric structure is now
interpreted as a scratch-mark, produced by a tube rotating around
its anchor on the sea-bed (Jensen et al., 2002). Other “discs” may
include medusiform organisms, but are more likely to be hold-fasts
of “fronds” or even protistan.

 Other vaguely cnidarian-like fossils may be something different.
Thus, it is equally plausible that rather than being any sort of animal
the enigmatic bag-like petalonamids (e.g. Ernietta, Pteridinium,
Ventogyrus) are multicellular (or plasmodial) analogues of meta-
zoans (e.g. Crimes and Fedonkin, 1996; Ivantsov and Grazhdankin
1997; Grazhdankin and Seilacher, 2002; Seilacher et al., 2003),
arising independently from one or more protistan clades. This is, of
course, effectively equivalent to the Vendozoa hypothesis, as pro-
posed by Seilacher (1989; see also Runnegar 1995). Whilst the
phylogenetic details are only beginning to be explored, perhaps the
Ediacaran interval should be interpreted not so much as the dawn of
animal life (Glaessner, 1984), but as the first effective exploration of
macroscopic multicellular morphospace (or equivalent syncitial con-
structions) by various protistan groups (see Seilacher et al., 2003),
one of which happened to evolve into the Metazoa.

There is another possible line of fossil evidence into the early
evolution of cnidarians, albeit in a form very different from the
classic Ediacaran record. These are the remarkable discoveries of
phosphatized embryos from the Neoproterozoic Doushantuo For-
mation of South China (e.g. Xiao and Knoll, 2000; Xiao, 2002). The

interpretations are complicated by both the fact that the embryos
may derive from several distinct groups, and also remarkable
claims for specific features of embryology such as gastrulation
(Chen et al., 2000). This latter analysis has been received with
justified caution (Xiao et al., 2000), but undeterred Chen et al.
(2002) have presented further claims for phosphatized embryos
showing such features as blastopores and internal cellular struc-
tures. Such structures, they would argue, are consistent with these
fossils being cnidarian gastrulae. These, however, are equally
questionable interpretations. Not only are the purported blasto-
pores relatively enormous, but at least some of the supposed
internal anatomy is clearly mineral growths of botyroidal phosphate
that grew during diagenesis. In this latter case there is no compel-
ling reason to think that they replicate pre-existing internal struc-
tures. To echo the points made so cogently by Xiao et al. (2000),
this is not to say that some of the structures identified by Chen et
al. (2000, 2002) are incorrectly identified, but simply to observe that
for the most part a diagenetic origin seems both more plausible and
parismonious.

Bona fide embryos do exist (e.g. Xiao and Knoll, 2000; Xiao,
2002), are possibly cnidarian, and conceivably are associated
with the co-occurring coralliform Sinocyclocyclicus. There is,
however, a curious anomaly between these late Precambrian
embryos and the spectacular examples from the Cambrian,
including the probable cnidarian Olivooides (Yue and Bengtson,
1999). In all these cases the mode of fossil preservation is via the
agency of very early diagenetic phosphatization, yet in the Cam-
brian examples the smallest embryos are effectively always
larger than the 64 cell-stage, whereas the Doushantuo material is
always preserved in material that never exceeds the 64 cell-
stage. This has two implications. First, laboratory experiments
attempting to replicate these diagenetic processes (Martin et al.,
2003) may be of rather marginal relevance, not only because they
throw little light on the specific process of phosphatization, but
also because they do not offer a reason for presumably similar
embryos in similar diagenetic environments being preserved at
mutually distinctive stages of growth. Second, and more impor-
tantly, it is possible that the life-cycles of the Doushantuo
?cnidarians were radically different from the Cambrian equiva-
lents (Conway Morris, in press), possibly hinting at a type of
metazoan rather different from expectation.

The case of the ctenophores is also intriguing, both because of
their extraordinary bodyplan and possible links to the Bilateria
(reviewed by Martindale et al., 2002, who also discuss the evi-
dence for the more likely Cnidaria-Bilateria link; see also Martindale
and Henry, 1999). Just as in the Cnidaria the emerging evidence
of ctenophoran developmental genes indicates both harbingers of
bilaterian organization, but also puzzling exceptions such as the
lack of expression of a forkhead gene in the sensory apical organ
(Yamada and Martindale, 2002). It is apparent that ctenophores
were widespread in the Cambrian (e.g. Chen and Zhou, 1997), and
the remarkable but poorly known Chengjiang taxon Trigoides aclis
(see Luo et al., 1999, see p. 56, pl. 8, Fig. 5), with its comb-rows
attached to prominent vanes, is a reminder that the early stages in
ctenophoran evolution may be different, perhaps very different,
than sometimes imagined (see also Odorico and Miller, 1997).
Another unresolved problem is the peculiar protistan Ctenoctophrys
chattoni, single-celled but with eight ciliated rows (see Conway
Morris, 1998b). That this resemblance is a rather striking example
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of convergence (see Conway Morris, 2003), as originally sug-
gested by Weill (1946), may be consistent with the suggestion that
the stereotypical arrangement of eight comb-rows is a reduction
from what primitively may have been a larger number in the
Cambrian (Conway Morris and Collins, 1996).

Metazoan evolution: the next step

The nature of both the diploblast-triploblast transition and the
earliest bilaterians is still largely conjectural. In principle, some
constraints may be inferred from the developmental biology of
various cnidarians. This indicates that a significant part of the
molecular machinery seen in triploblasts is already in place (e.g.
Müller et al., 1999, 2003; Zhang et al., 2001; Miller et al., 2003;
Scholz and Technau, 2003). This echoes, of course, the repeated
observation that “primitive” animals do not so much lack the genetic
“switches” and “levers”, but rather the appropriate “instruction
manuals”. The latter, of course, are effectively to be sought in the
realm of protein chemistry at a level quite far removed from the
genomic substrate (see Ryoo et al., 1999). Thus just as amphioxus
(and perhaps tunicates; see below) is “a vertebrate in waiting”
(Conway Morris, 2000b) so cnidarians may have an equivalent
status with respect to the bilaterians. The details of any cnidarian-
bilaterian transformation, however, are far from clear, and it is not
surprising that topical questions of diploblast-triploblast equiva-
lences in terms of such structures as “head”, “body axes” and
“mesoderm” are still rather inconclusive. Nor should we forget (see
also below) that at least some genes are subject to rampant co-
option and re-deployment, so that identifying an “original function”
may be more problematic than is sometimes realized. In conclu-
sion, at the least it would be naïve to think of these “primitive”
animals as some sort of “genetic museum”.

So far as the earliest bilaterians are concerned, it seems
increasingly likely that whilst many of the platyhelminthes are
derived lophotrochozoans, the acoels (and nemertodermatids) are
genuinely basal (e.g. Jondelius et al., 2002; Ruiz-Trillo et al., 2002;
Telford et al., 2003). Excavating the roots of the Bilateria, however,
may be more complicated than is often supposed. Thus, whilst the
phylogenetic position of the chaetognaths – an orphan-phylum if
there ever was one – has long been conjectural, recent work
suggests that they too have a basal position (Papillon et al., 2003).
What of their fossil record? The preservation potential of acoels
must be very low, but there is a Cambrian fossil record of possible
chaetognaths (e.g. Szaniawski, 1982; Chen and Huang, 2003).
It may also be worth considering a number of Ediacaran taxa, which
although quite unlike the living acoels and chaetognaths, possibly
have some bearing on the earliest bilaterians. These include the
relatively well-known Dickinsonia and the more recently described
Yorgia (Ivantsov, 1999; Dzik and Ivantsov, 1999). Both are seg-
mented, but the anterior unit of Yorgia is remarkable for its
asymmetry and also canal-like structures. Another curiosity is that
rock slabs bearing this fossil are often associated with imprints (see
Fedonkin 2003, Figs. 10-12). Ivantsov (1999; see also Dzik and
Ivantsov, 1999) interpreted these as post-mortem structures, al-
though the alternative possibility is that Yorgia was locomotory
(possibly by the action of ciliary gliding). Such is the view of
Fedonkin (2003), who suggested the individual imprints repre-
sented protracted periods of immobility. A further possibility is that
these stationary episodes were also times of feeding. In any event

Fedonkin (2003) suggested that food acquisition may have been
by ciliary transfer along the ventral grooves to the mouth. Despite
the likely phylogenetic closeness of Yorgia and Dickinsonia (and
several other taxa, such as Vendia; see Ivantsov 2001), and their
inclusion in the Proarticulata (or Dipleurozoa), neither this nor the
recent descriptions of both possible internal anatomy (Dzik and
Ivantsov, 2002) and locomotory abilities (Ivantsov and
Malakhovskaya, 2002) do much to resolve more precisely their
wider phylogenetic relationships.

Metazoan evolution: the triploblast stories

So far as our understanding of the evolution of the three super-
clades of Bilateria (the lophotrochozoans, ecdysozoans, and deu-
terostomes) is concerned, there have been many interesting
developments. Arguments for an annelid-brachiopod relationship
via the Cambrian halkieriid-wiwaxiid clade are rehearsed else-
where (Conway Morris and Peel, 1995). It has, however, recently
received support from studies of Lower Cambrian brachiopod-like
shells (Ushatinskaya, 2002; Holmer et al., 2002; see also Parkhaev,
1998), although to describe the central idea of brachiopod origin,
that is the folding together of two formerly separate shells, as “a
neglected bodyplan hypothesis” (Cohen et al., 2003) is perhaps a
slight exaggeration (Conway Morris, 1998c).

The slug-like halkieriids, and presumably the more primitive
siphogonuchitids, each armoured with calcareous sclerites, are
also at least vaguely reminiscent of primitive molluscs, specifically
chitons and aplacophorans. Details of the principal evolutionary
transitions that led from a halkieriid-like animal to a mollusc are,
however, still largely conjectural. More primitive still may be the
Ediacaran Kimberella (Fedonkin and Waggoner, 1997), and it is
interesting that some specimens co-occur with prominent scratch
marks, perhaps representing grazing traces (?radulate) on the
microbial mat, as well as what appear to be short trails (Fedonkin
2003, Figs. 14 and 16; see also Seilacher et al., 2003; Fig. 3).
Even though there is some glimmer of understanding concerning
the origins of annelids, brachiopods and molluscs, it is still the case
that lophotrochozoan evolution presents numerous conundra. Not
least of these are the (i) origin of nemerteans; (ii) precise relation-
ships between brachiopods, bryozoans and phoronids; (iii) details
of the “regressive” evolution of platyhelminthes; (iv) surprising
discovery that myzostomids are probably not aberrant annelids
(Eeckhaut et al., 2000) and (v) position of sipunculans.

In terms of ecdysozoan evolution there have been important
realignments amongst the arthropods, drawing on both molecular
(e.g. Regier and Shultz, 1997; Giribet et al., 2001; Hwang et al.,
2001) and palaeontological (e.g. Budd, 2002; Hughes, 2003) data.
So too the widely accepted inclusion of priapulids and nematodes
has revitalized conjectures of their evolution. The former group has
a rich and still incompletely documented Cambrian record (e.g.
Chen and Zhou, 1997; Conway Morris, 1998c). It is tempting to
envisage a priapulid-lobopodian transition, as presciently envis-
aged by Dzik and Krumbiegel (1989; see also Budd 2001). By
taking onychophoran lobopodians as the most primitive arthropods,
such a transformation becomes interesting in the functional con-
text of a locomotory shift from infaunal burrowing to epifaunal
walking (and gait adjustment). As such it is somewhat analogous
to the hypothesized crawling to leg-like transition in the halkieriid/
wiwaxiid –annelids (Conway Morris, 1998c).
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As with the other groups, however, the Ediacaran record of
possible ecdysozoans is problematic. While it has long been
recognized that animals like Spriggina are vaguely arthropodan,
attempts to arrive at a specific arthropodan phylogeny on the basis
of Ediacaran material (e.g. Waggoner, 1996) have not won wide
support. Indeed, if the problems of understanding the Ediacaran
assemblages needed any emphasis, one can simply note that
Seilacher et al. (2003) regard Spriggina as a member of the
Vendobionta, along with such forms as Vendia and Vendomia,
while Fedonkin (2003; see also Ivantsov, 2001) place them within
the Bilateria. An interesting recent development, however, is the
suggestion that the Lower Cambrian Chengjiang arthropod
Primacaris is related to the Ediacaran Parvancorina (Zhang et al.,
2003). Another possibility worth entertaining is the fact that a
“skeletal” Primacaris, that is, with its carapace reduced to central
and flanking spines, would be intriguingly similar to the Burgess
Shale arthropod Marrella. In any event, if arthropods with jointed
appendages had evolved by late Ediacaran times, and if the
hypothesis of a priapulid→lobopodian→ anomalocaridid→CCT
(chelicerate, crustacean, trilobite) sequence is valid (Budd, 1998),
then this has obvious implications for the early timing of ecdysozoan
diversification. The position of nematodes, and presumably the
related nematomorphs (e.g. Bleidorn et al., 2002), is rather prob-
lematic, but most evidence suggests that within the ecdysozoans
(e.g. Manuel et al., 2000) they are derived. Whether, however, they
arose from a priapulid or arthropod-like ancestor is still conjectural.

What then of the deuterostomes? This super-phylum exempli-
fies most clearly the question of bodyplan disparity, be it the bizarre
echinoderms that have thrown away their gill slits (and perhaps
their brains; but see Lowe et al., 2003), while plumping for
pentaradiality, the still enigmatic enteropneusts, the strange cellu-
lose-encased tunicates, or the radical innovations of the verte-
brates with their neural crest tissue, sensory sophistications, and
apparently unique duplication of the Hox clusters. This medley of
evolutionary questions has spawned a vast, sometimes contradic-
tory, literature, but here too some possible signs of order are
emerging. Because it is practically impossible to imagine what, to
take one example, the common ancestor of the echinoderm-
hemichordates looked like, it is necessary to turn again to the fossil
record. Here we have argued that the two key morphological
features in the primitive deuterostomes are a bipartite body and the
anterior bearing gill slits, as manifested in the Lower Cambrian
group known as the vetulicolians (Shu et al., 2001). The alternative
view, that vetulicolians are some sort of strange arthropod has
been bolstered by reconstructions showing prominent eyes and
antennae (Chen and Zhou, 1997). These features appear, how-
ever, to be hypothetical and have not been observed in the
thousands of specimens collected.

The implications of vetulicolians as primitive deuterostomes, if
confirmed, will take some time to sort out. Here it is only possible
to discuss briefly a couple of points. One is that the voluminous
internal cavity in the anterior section and the prominent openings
are consistent with the latter’s original function being associated
with disposal of excess water, as hypothesized by Gilmour (1979).
A second point is a potentially significant similarity to the enigmatic
group of echinoderms, known as the calcichordates. The hypoth-
esis of Jefferies (1986) revolves around the notion that amphioxus,
tunicates and vertebrates are all derived from calcichordates and
independently lost their calcareous skeleton. These interpreta-

tions, however, depend upon contentious reconstructions of soft-
bodied anatomy (including features e.g. brain and eyes, that are
remarkably advanced for their supposed evolutionary position).
The calcichordate hypothesis is also difficult to reconcile with many
other aspects of the fossil record, not to mention stratigraphic
order, as well as molecular biology. As such Jefferies’ ideas have
been greeted with scepticism (e.g. Lefebvre, 2003), although it has
to be acknowledged that apart from being described as “aberrant”
by nearly all other workers, their place in echinoderm phylogeny is
so uncertain that in any wider context they are effectively ignored,
regarded as derived off-shoots, of uncertain ancestry.

Apart from the strange asymmetries, notably in the cornutes, the
most remarkable feature of the calcichordates is the possession of
apertures, interpreted as gill slits on the anterior section (Jefferies,
1986; Dominguez et al., 2002) and a segmented “tail”. This
possession of a bipartite body and gill slits suggests that the origin
of the calcichordates, and thereby the echinoderms, could be with
a vetulicolian-like animal that developed the ability to secrete the
diagnostic stereom skeleton of high magnesium calcite. In passing
we should note that although molecular evidence strongly supports
echinoderms and hemichordates as sister-groups (e.g. Bromham
and Degnan, 1999; Cameron et al., 2000) the origins of the
hemichordates, of which the enteropneusts are probably the most
primitive, is still enigmatic.

The fossil record, however, may help to resolve at least one step
towards the resolution of the other major deuterostome clade, that
of cephalochordate-tunicate-vertebrate (CTV). This involves con-
tentious interpretations surrounding the yunnanozoans, another
important component of the Chengjiang faunas. Whilst the general
consensus has been that these animals are craniates (e.g. Chen
et al., 1999; Mallatt and Chen, 2003), this interpretation suffers
from a series of difficulties, not least concerning the supposed
identification of putative myomeres and a notochord. In describing
a new species (Shu et al., 2003) we suggested a possible evolu-
tionary relationship to vetulicolians, as well as a more controversial
argument concerning the possibly composite origin of the pharyn-
geal gills. In our view the yunnanozoans may well be an important
staging post towards the CTV clade, but the existing evidence
suggests they are substantially closer to the vetulicolians than the
craniates.

Amphioxus has already been described as “a vertebrate in
waiting” (Conway Morris, 2000b). It is significant that both this
group and the tunicates have genes that in the vertebrates are
associated with neural crest expression (e.g. Holland et al., 2000;
Manni et al., 2001), but evidently they lack the necessary genetic
networks. Although the tunicates are the centre of intense research
(e.g. Satou and Satoh, 2003, and accompanying papers), for
several reasons their wider relevance to the origin of the verte-
brates is perhaps questionable. To the first approximation agnathan-
amphioxus- tunicate form an evolutionary trichotomy; in other
words it is not clear if either amphioxus or tunicate is the more
primitive. In particular, it is arguable whether the celebrated tuni-
cate “tadpole” is any more relevant to understanding vertebrate
origins than is amphioxus. In fact, in many respects it is as simple
to regard the tunicates as highly derived, with primitively a sessile
mode of life and short-lived larvae whose anatomy is relevant to the
functional needs for dispersion rather than a template for phyloge-
netic ascent to the vertebrates. This view also assumes that the
fascinating pelagic oikopleurans are heterochronic derivatives of
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more primitive forms (see Stach and Turbeville, 2002). Finally, the
tunicates show a series of remarkable idiosyncracies, not least the
ability to synthesize cellulose for the tunic and the employment of
the respiratory protein haemocyanin (but see Ebner et al., 2003).
Both of these may have been acquired by gene transfer (see Dehal
et al., 2002).

Vertebrate origins, therefore, are still contentious, with neither
amphioxus nor tunicate larvae likely to provide a complete picture.
There has, however, been dramatic new information with the discov-
ery of stem-group craniates from the Chengjiang Lagerstätte (Shu et
al., 1999, 2003; Shu, 2003). A parallel publication (Hou et al., 2002),
however, diverges significantly in its interpretations. Apart from the
inability to identify a notochord and a tentative identification of
“sensory structures” (cf. Shu et al., 2003), the overall emphasis by
Hou et al. (2002) on an amphioxus-like appearance (apart from
possibly metameric gonads; see Shu et al., 1999) is also question-
able. For example, Hou et al. (2002) identify an extensive set of
“arches” posterior to the unequivocal set of anterior branchial
pouches and supporting bars (Shu et al., 1999, 2003), and also V-
shaped myotomes. In neither case, however, is this consistent with
our evidence. Moreover, the functional context of unequivocal
branchial pouches combined with a posterior set of presumed
branchial arches is somewhat problematic, while contrary to Hou
et al. (2002) there is unequivocal evidence that the myotomes had
a Z-shape rather than a V-shape.

An emphasis on V-shaped myotomes would be significant not
only because it would facilitate comparison to amphioxus, but also
the putative basal craniate group known as conodonts. It is
intriguing, however, to speculate that rather than conodonts being
integral to vertebrate origins (e.g. Donoghue et al., 2000), they are
actually a parallel development arising independently from the
cephalochordates (see also Kemp and Nicoll, 1995, 1997). Thus
while conodonts possess phosphatic teeth that have what are
claimed to be vertebrate-like fabrics (e.g. Sansom et al., 1992;
Armstrong and Smith, 2001), other studies question this conclu-
sion (e.g. Kemp and Nicoll, 1997; Kemp, 2000a,b; see also
Schultze, 1996). So too the architecture of the feeding apparatus
is markedly at odds with any known vertebrate, as indeed is
evidence for the “enamel organ” being “repeatedly reformed through-
out [the] life” in at least some conodonts (Armstrong and Smith,
2001, p. 819). If indeed amphioxus (or tunicate) is “a vertebrate in
waiting” then it seems quite possible that neural crest, biomineralized
tissue, and perhaps features such as camera eyes (see Purnell,
1995; Donoghue et al., 2000), evolved several times indepen-
dently.

Conclusion

The ways in which biological “space” is explored, be it at the level
of proteins or social systems, is arguably one of the two central
problems in evolution (Conway Morris, 2003). The other, and by no
means unrelated question, is how the molecular substrates are
translated into operational phenotypes and the constraints that
might accompany these processes. In the context of this review,
these points return both to the five questions I listed near the
beginning of this review and the specific problem of how animal
bodyplans evolve.

Whilst there is no over-arching theory of developmental biology,
some generalities are emerging. First, while it is reasonable to

suppose that genes and regulatory processes had original func-
tions, in reality these may be lost in the mists of history. Either way
co-option and redeployment are rampant both in a developmental
context (e.g. Eizinger et al., 1999; Heanue et al., 1999 (see also
Relaix and Buckingham, 1999); Merlo et al., 2000; Damen, 2002;
Locascio et al., 2002; Lowe et al., 2002; Fabrizio et al., 2003) and
in related topics such as those concerned with enzymatic pathways
(e.g. Peregrin-Alvarez et al., 2003). The realities of conservation
are not, of course, in dispute; a fact that applies not only to animals,
but also to plants (e.g. Kirst et al., 2003) and beyond. What we are
beginning to see, however, is evidence for a far more dynamic
system than might be supposed from the classic examples of gene
conservation. Thus, writing of one specific instance Locascio et al.
(2002) remark that “The present analysis of Snail/Slug duplicated
genes during vertebrate evolution reveals a much higher degree of
plasticity and complexity than expected” (p. 16845). Just how labile
these systems will prove to be is still largely conjectural. Neverthe-
less, all the signs are that developmental frameworks are often far
from static. To take a specific case, that of a cnidarian gene referred
to as cnox-2, Schierwater et al. (2002) emphasize how it appears
that this putative ParaHox gene is both “multicolored” and
“polygenealogical”, that is cnox-2  has a diversity of expression
patterns in different body regions in different cnidarian lineages.

From this perspective the search for an “original function”
becomes almost an irrelevance, if not positively distracting. For
example, Mineta et al. (2003) observe that c. 30 per cent of the
genes related to the nervous system in planarians have equiva-
lents in Aradiopsis and yeast, neither of which has any pronounced
mental capacities. So too the apparent examples of genomic
conservation not only need to consider examples of co-option but
the increasing evidence that the developmental systems them-
selves evolve. Rather than remaining embedded in an essentialist
framework – with iconic reference to Pax-6, tinman, otx, and so on
– we need to discover, given the degrees of variability, how it is that
new pathways, interactions and networks evolve in selective and
functional regimes (e.g. Collazo, 2000; Grenier and Carroll, 2000;
Gibert, 2002; Ronshaugen et al., 2002; Shiga et al., 2002; Vervoort,
2002). Such a programme is, of course, familiar to those concerned
with the mapping of epigenetic landscapes, and the still-remark-
able fact that embryos “navigate” towards the same complex
structures via markedly different routes.

Such a view undermines the reductionist perspective of genes
“for something”; rather it is context and association that matter.
Moreover, much of the developmental conservation may be little
more than skin deep, reflecting the economy of using that which is
already available. To imagine also that this constrains evolutionary
possibilities is refuted in examples where for one reason or another
a gene is “unavailable”, yet the “desired” structure still emerges.
Thus in the development of the snout of the star-nosed mole,
possibly because of pre-existing neural requirements, the embryo-
logical pathway is radically different and suggests a novel develop-
mental pathway, yet the spectacular appendages still emerge
(Catania et al., 1999).

This welter of examples may be individually fascinating, but they
hardly present a coherent picture. So far as general patterns are
concerned, one of the most productive ways forward, I believe, is
in the study of convergence (Conway Morris, 2003). The immensity
of molecular “space” and the variety of developmental systems
might suggest that this is the one area of biology where conver-
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gence is of marginal relevance. That this may be a premature
assumption is apparent from some intriguing evidence in both
expression patterns and phenotype studies. In the former case
Nielsen et al. (2003) demonstrate a rather extraordinary example
of evolutionary convergence in terms of otx expression in echinoids
with direct larval development. This mode has evolved a number
of times from indirect larval development, where it is already known
that otx  has at least two distinct expression patterns. In a result that
Nielsen et al. (2003) describe as “most surprising” (p.74) (cf.
Conway Morris, 2003, p. 128), each independent lineage of direct
developers employs otx for a new and specific purpose (in the
primordial tube feet). The implication is that somehow this gene
may play a central and irreplaceable role. Nor is this the only such
example, and in an overview of developmental evolution in the
echinoderms Wray and Lowe (2000) have an absorbing discussion
of potential examples of molecular convergence. Of equal impor-
tance is the report by Wittkopp et al. (2003) concerning similar
pigmentation patterns in Drosophila that emerge by at least two
distinct regulatory mechanisms (see also Hoekstra and Nachman,
2003).

These examples of molecular co-option and convergence (see
also, for example, Bull et al., 1997 and Cooper et al., 2003) should
give us pause for thought for at least two reasons. First, it reinvigo-
rates the discussion of homology and what biological similarity
really means. For example, are the tripartite brains of insects and
vertebrates (Hirth et al., 2003) similar because of the ancestral
condition in some sort of ur-bilaterian (as these authors argue), or
is it because the pathways of evolution are far more constrained,
if not pre-ordained, than is generally supposed? This second
possibility is, I suspect, an uncomfortable thought for many evolu-
tionary biologists, yet in the immediate context of tripartite brains
some support for this may come from the polychaete annelids. As
lophotrochozoans this group is, of course, far removed from either
insects or vertebrates. Yet, in the polychaetes, as Rouse and
Pleijel (2001, p. 26) note, the brain structure varies widely, with the
most complex arrangements being found in the mobile and active
groups, notably the eunicids and nereidids. Here the brain is again
tripartite, sometimes with mushroom-like bodies, yet annelid phy-
logeny suggests that at least here the tripartite brain must have
arisen independently.

The second reason is that despite all the talk of constraints and
conservation, the evidence for dynamic and evolving systems
suggests that not only can very specific areas of the phenotype be
precisely tailored (e.g. Stern, 2003), but in addition the relevant
target and number of cells involved can be remarkably small (e.g.
Weber, 1992). In the final analysis we are what we are because of
the process of natural selection rather than any internal specific
and over-riding constraint (e.g. Beldade et al., 2002). Process,
however, can only operate on a substrate, and I would argue that
far from evolution being chaotically contingent in fact the way in
which biological “hyperspaces” are navigated points to a deeper,
and to date largely unrecognized, structure.

And so to answer the subtitle of this paper, “Would Darwin be
satisfied?”: fascinated, certainly; but satisfied?, not yet.
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