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Short Communication

Expression of DjXnp, a novel member of the SNF2-like
ATP-dependent chromatin remodelling genes,
in intact and regenerating planarians
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ABSTRACT SWI/SNF-related complexes include proteins implicated in the regulation of gene
expression by chromatin remodelling. We have identified in planarians, invertebrates well-known
for theirregenerative capability, the cDNA of anovel gene, DjXnp, which encodes a protein of 1,076
amino acids, containing seven helicase domains similar to those found in the SNF2-like family
members. Sequence comparison reveals a significant degree of similarity of DjXNP with mamma-
lian XNP/ATRX proteins. In situ hybridization experiments performed on intact and regenerating
planarians demonstrated that DjXnp transcripts were distributed in mesenchymal cells and were
especially abundant in nerve cells. During anterior regeneration, DjXnp was detected in the
blastemal area where the nervous system is newly forming. This expression pattern reveals
extensive similarities with that described for mammalian XNP/ATRX, suggesting that these
genes may have a conserved function at the cellular level.
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The SNF2-like protein family includes DNA helicase/ATPases
related to the SWI/SNF complexes involved in chromatin re-
modelling (Gorbalenya and Koonin, 1993; Eisen ef a/, 1995).
Within this family, XNP proteins are of special interest, since
they may regulate the activity of specific genes in different
chromosomal environments, as well as during neuronal devel-
opment (Picketts etal, 1996; Cardoso efa/, 1998). The human
XNP/ATRX is expressed in the brain and other tissues. Muta-
tions of this gene cause the ATR-X syndrome, an X-linked
mental retardation disorder (Gibbons et a/, 1995). The murine
homologue is involved in early stages of neuronal differentia-
tion during embryogenesis (Gecz ef a/, 1994; Stayton et a/,
1994). In addition to the helicase domains present in the C-
terminal region, the mammalian XNP/ATRX proteins have an N-
terminal region including three C2-C2 type zinc-finger motifs
and a putative coiled coil domain (McDowell ez a/, 1999;
Cardoso et al, 2000). This region, that corresponds to the
exons 1-9 in the human gene, is absent in Xnp-1, a gene
partially similar to XNP/ATRX, recently characterized in the
nematode C. elegans (Villard et al., 1999).

In a search for regulatory genes promoting differentiation of
neoblasts - the totipotent stem cells of planarians (see Baguia,

1998; Newmark and Sanchez-Alvarado, 2002) - by chromatin
remodelling, we previously isolated in Dugesia japonica a
cDNA fragment, O/iX7np, showing similarity to human and mouse
XNFP/ATRX (Rossi et al, 2001). The full-length sequence of
DjXnpwas established here by 5'/3' rapid amplification of cDNA
ends (RACE). DjXnpis 3,734 bp long and has an open reading
frame of 3,228 bp that encodes a protein of 1,076 amino acids,
including seven putative helicase domains (Fig. 1A). The
helicase domains of DjXNP share between 37% and 48%
sequence identity with those found in known XNP-related
proteins (Fig. 1B). A schematic alignment of these proteins is
presented in Fig. 1C. Similarly to that found in C. e/egans XNP-
1 (Villard et al, 1999) and Drosgphi/ad-XNP, the whole DjXNP
shows similarity only with the mammalian XNP/ATRX C-termi-
nal region including the DNA helicase motifs (Appendix I). In
these invertebrates, XNP proteins lack the N-terminal region,

Abbreviations used in this paper: ATRX, X-linked alpha-thalassemia with
mental retardation; CNS, central nervous system; Dj, D. japonica; SWI/SNF,
mating type switching/sucrose non-fermenting; XNP, X-linked nuclear
protein.
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Fig. 1. Complete amino acid sequence of DjXNP, as deduced from nucleotide sequence analysis
of DjXnp ¢cDNA. (Accession number AJ490823). (A) The DiXNP sequence is shown. The seven
putative helicase domains |, la, Il, Ill, IV, V, VI are boxed. (B) Pairwise comparisons of the DJXNP
sequence region including the helicase domains with those of vertebrate and invertebrate XNP-related
proteins: C. elegans XNP-1 (AF134186), Drosophila d-XNP (AF217802), human XNP/ATRX (U75653).
The GAP program of the GCG software package was used. The degree of amino acid sequence identity
and similarity (in brackets) is expressed as a percentage. (C) Schematic diagram of DIXNP compared
with the XNP-related proteins indicated in B. Structural motifs are indicated. Numbers on the right refer
to the amino acid residues of each protein.

(Fig. 3 A-F). In planarians undergoing
cephalic regeneration, Xrpexpression
was never observed in the blastema at
1 day after cutting (Fig. 3 G,L). In pla-
narians regenerating a head, DOiXnp
mRNA accumulation was first seen in
two bilaterally symmetrical blastemal
regions at 3 days after cutting (Fig. 3
H,M). Later on, DjXrp appeared mainly
localized in the area where the cepha-
lic ganglia were forming (Fig. 3 I,N).

found in human and mouse XNP/ATRX. Although we cannot
rule out a priori a phenomenon of convergent evolution, these
findings suggest the possibility that the XNP-related genes
derive from a common ancestral DNA helicase. The XNP/
ATRX-specific N-terminal part might have in turn originated
from one or more exon-shuffling events during mammalian or,
possibly, vertebrate evolution (Villard et a/., 1997; Villard ez a/.,
1999).

The expression of DO/Xnp was also investigated by /7 situ
hybridization on paraffin sections of planarians after 3 days of
cephalic regeneration. Accumulation of D/X7p transcripts was
detected in blastemal cells located close to the amputated
nerve cords (Fig. 4 A,B). The analysis of synaptotagmin mRNA
expression strongly supports the possibility that the O/Xnp-
positive cells represent blastema cells differentiating, or just
differentiated, into brain nerve cells (Fig. 4C). On the whole, the
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Fig. 2 (Left). DjXnp expression pattern in intact D. japonica, as detected by in situ hybridization. (A) Diagram of the planarian body. The CNS is
schematically represented, anterior is to the left. The plane of the sections depicted in C-F is indicated. cg, cephalic ganglia; e, eyes; Ib, lateral branches;
ph, pharynx; vnc, ventral nerve cords. (B) Ventral view of a planarian visualized by whole-mount in situ hybridization. DjXnp transcripts accumulated in
the cephalic ganglia and in the proximal part of the lateral branches. (C-F) In situ hybridization on transverse sections. (C) DjXnp-expressing cells are
distributed in the peripheral region of the cephalic ganglia. (D) Camera lucida drawing of the section depicted in (C), illustrating the various morphological
structures. cg, cephalic ganglion, g, gut. (E) High magnification showing DjXnp mRNA accumulation in nerve cells. (F) Expression of the nerve cell marker
DjSyt (Tazaki et al., 1999; Cebria et al., 2002). Scale bars, 500 um in B and 50 um in C-F.

Fig. 3 (Right). DjXnp expression pattern in regenerating D. japonica, as detected by whole mount in situ hybridization. (4,D,G,L, 1 day post-
amputation; B,E,H,M, 3 days post-amputation; C,F,I,N, 6 days post-amputation. (A,B,C) A planarian fragment regenerating a tail. (D,E,F) Magnified views
of the regenerating areas indicated by an asterisk in A, B and C respectively. (G,H,1) A planarian fragment regenerating a head. (L,M,N)Magnified view
of the regenerating areas indicated by an asterisk in G, H and | respectively. Scale bars, 500 um in A-C and G-I, 200 um in D-F and L-N.

used as previously described (Salvetti ef a/, 1998). The SMART RACE
cDNA amplification kit (Clontech) was used to complete the OiXnp
sequence. The 3' region (3' D/Xnp) was isolated using the sequence-
specificsense primer: 5’ AATAAATTATTGGAATATCATACGATGG3'. The
sequence-specificantisense primer 5’CCTTTTGTGTACCAAGAAG3' was
used to amplify the 5' end (5°D/Xnp). The PCR products were TA-cloned
using pGEM-T easy vector (Promega). All clones were sequenced by
automated fluorescent cycle sequencing (ABI). The DIG-RNA labeling

spatial and temporal expression patterns of O/X7np strongly
suggest that this gene may be involved in differentiation and/or
maintenance of nerve cells in planarians. Interestingly, XNVF/
ATRX is also associated to brain development in mammals
(Gecz etal, 1994; Stayton efal, 1994). These data support the
possibility that X7p-related genes may share a similar role in
the cells of distantly related organisms, and suggest that an

ancient biochemical mechanism involving XNP-like proteins
could have been conserved over the course of animal evolu-
tion.

Experimental Procedures

Planarians (Platyhelminthes, Tricladida) belonging to the asexual
Dugesia japonicaclonal strain Gl (Orii et al, 1993), were maintained and

kit (Roche) was used to produce 5’D/Xnp and synaptotagmin (0O/Sy)
digoxigenin (DIG)-labeled antisense and sense riboprobes. /n situv
hybridization procedures were perfomed as described by Agata ef a/.
(1998) and Kobayashi ef a/ (1998).
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Fig. 4. Comparison between the expression patterns of DjXnp and
DjSytin D. japonicaplanarians regenerating a head, as detected by in
situ hybridization on longitudinal sections, 3 days after cut. (A)
Schematic drawings of an intact planarian and a planarian regenerating a
head. The CNS is schematically represented, anterior is to the left. The
cutting site is indicated by a broken line. The blastema is delimited by two
asterisks. (B) DjXnp-expressing cells accumulated in a blastema region
close to an amputated nerve cord (outlined with a broken line). (C) DjSyt
transcripts were observed in the blastema region where the cephalic
ganglia are newly forming and in the cells of an old nerve cord (outlined with
a broken line). Scale bars, 50 um.
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APPENDIX | (see opposite)

Comparison of the deduced amino acid sequence of DIXNP with those of
other XNP proteins. Amino acid sequences were aligned using CLUSTAL
W and visualised with BOXSHADE. The human XNP/ATRX sequence is
shown from the amino acid position 941. Black backgrounds indicate
identical residues and grey backgrounds indicate conserved residues.
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