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ABSTRACT Studies in zebrafish have potential to contribute to understanding of the vertebrate

hematopoietic and vasculogenic systems. Our research has examined the roles of several molecules

in pathways that lead to the development of blood and vessels in zebrafish, and has provided

insights into the regulation of these processes. Gdf6a/radar, a member of the bone morphogenetic

protein (BMP) family, is expressed in the zebrafish hypochord and primitive gut endoderm;

structures that flank the developing dorsal aorta and posterior cardinal vein. This pattern of

expression positions Gdf6a/radar as a candidate regulator of vasculogenesis. Support for such a

role has come from experiments where Gdf6a/radar function was depleted with antisense

morpholino oligonucleotides. This resulted in vascular leakiness, suggesting that Gdf6a/radar is

involved in maintenance of vascular integrity. The transcription factor Runx1 is known to play a

critical role in mammalian definitive hematopoiesis. When Runx1 expression domains and function

were analyzed in zebrafish, the importance of this gene in definitive hematopoiesis was confirmed.

However there was also evidence for a wider role, including involvement in vascular development

and neuropoiesis. This work has laid the foundation for an ethylnitrosourea (ENU) mutagenesis

screen based on runx1 whole-mount in situ hybridzation, that aims to identify genes operative in

the runx1 pathway. An additional member of the Runx family, Runx3, is also involved in develop-

mental hematopoiesis, with a function distinct from that of Runx1. We hypothesize that Runx1 and

Runx3 form a continuum of transcriptional control within the hematopoietic system. An added

attraction of zebrafish is that models of human disease can be generated, and we have shown that

this system has potential for the study of Runx1-mediated leukemogenesis.
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Introduction

An understanding of stem cell biology requires definition of the
molecular mechanisms that permit a single multipotent cell to
differentiate into a complex population of functionally and morpho-
logically distinguishable cells. The hematopoietic system provides
a powerful model for addressing questions in stem cell develop-
ment. However, within this system, there remain significant chal-
lenges in identifying the molecular switches that regulate the
earliest events in hematopoietic stem cell formation. Work in this
area has highlighted the tight interrelationship between the devel-
opment of blood and the vasculature from mesodermal precursors.
Insights into the genetic programs that regulate developmental
hematopoiesis and vasculogenesis are being made through use of
a variety of model systems. The zebrafish is one of the more
recently adopted vertebrate models that is amenable to genetic

manipulation and provides a bridge between less complex sys-
tems such as Drosophila and higher vertebrates for understanding
early events in blood and vascular development.

Developmental Hematopoiesis: the Pathway to Blood

The blood system arises during development from ventral
mesoderm. The pathway of events leading to the early establish-
ment of the hematopoietic system can be viewed as a multi-step
process beginning with mesoderm induction. Next, ventral meso-
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derm is patterned across the dorso-ventral axis during gastrula-
tion, followed by specification of ventral mesoderm to a hematopoi-
etic fate (reviewed in Davidson and Zon, 2000). During gastrula-
tion, the marginal zone gives rise to cells or tissues as varied as
notochord, somites, pronephros, and blood. The mesoderm is
patterned as a result of complex antagonistic interactions between
regulators that promote ventral fates and molecules secreted by
the Spemann organizer, or dorsal mesoderm, that induce dorsal
fates. A substantial amount of data points toward members of the
TGF-β family playing a role in this process with, for example, a
gradient of bone morphogenetic proteins (BMPs) being estab-
lished by the differential action of BMP antagonists such as
cerebrus, chordin, follistatin and noggin (De Robertis et al., 2000).
In zebrafish, it is thought that signaling molecules from the yolk cell
syncytial layer induce adjacent cells in the marginal zone to adopt
a mesodermal fate (Solnica-Krezel, 1999).

Studies of the blood island yolk sac led to recognition of the close
spatial and temporal association between the developing hemato-
poietic and endothelial systems. The concept then arose of a
common precursor cell, called the hemangioblast, which derives
from ventral mesoderm and has two fates; namely hematopoietic
stem cells and angioblasts (Haar and Ackerman, 1971; Sabin,
1920). While the isolation and characterization of the hemangioblast
has been difficult, there is an increasing amount of evidence for the
existence of such a cell. There are a number of molecules,
including cell surface receptors and transcription factors, that are
common to the hematopoietic and endothelial lineages. These
include CD34 (Young et al., 1995), Flk1 (Millauer et al., 1993), Flt-
1 (Fong et al., 1999), GATA-2 (Orkin, 1995), PECAM-1 (Watt et al.,
1995), Tie2 (Takakura et al., 2000) and SCL (Kallianpur et al.,
1994). It has been demonstrated that cells of both the hematopoi-
etic and endothelial lineages can be cultured from differentiated
mouse embryonic stem (ES) cells via a common, transient progeni-
tor (Choi et al., 1998). This work demonstrated that blast cell
colonies (BL-CFC) contained primitive and definitive hematopoi-
etic precursors as well as endothelial cells.

The targeted disruption of genes in mice has demonstrated that
several genes are essential for both hematopoietic and endothelial
development. These include Flk-1 (Shalaby et al., 1995), TGFβ1
(Dickson et al., 1995) and SCL (Robb et al., 1995; Shivdasani et al.,
1995; Visvader et al., 1998). In zebrafish, the spontaneous mutant
cloche has defective blood and endothelial development, with
abnormalities in endocardial structure (Stainier et al., 1995). The
expression of several blood markers including scl, lmo2, and gata-
1, as well as the vascular markers flk1, fli1 and tie1, are all severely
reduced or absent in cloche embryos (Gering et al., 1998; Liao et
al., 1998). Injection of scl is able to partially rescue the cloche
phenotype, providing evidence that Scl acts downstream of cloche
(Liao et al., 1998). It is likely that the product of the cloche gene
plays a role in hemangioblast development.

During vertebrate development, there are overlapping waves of
hematopoiesis that originate from distinct anatomical sites. In
many vertebrates, regions of the ventral mesoderm migrate onto
the embryonic yolk sac and form blood islands that give rise to both
primitive erythroid and primitive myeloid hematopoietic programs
(Cumano and Godin, 2001; Orkin, 2000). In mammals, a transition
occurs from primitive yolk sac hematopoiesis to a multilineage
hematopoietic programme in the fetal liver that gives rise to
definitive erythroid, myeloid and lymphoid cells (Cumano and
Godin, 2001; Orkin, 2000).

Despite recognition that the yolk sac represents the first site of
both hematopoietic and endothelial development in the mamma-
lian embryo, the precise nature of the genetic pathways that
regulate the commitment of mesoderm to these fates remains
poorly understood. Studies in mice and zebrafish have pointed to
a role for Scl in the development of a putative hemangioblast.
Targeted disruption of Scl has shown that it is required for the
development of both primitive and definitive hematopoiesis, and
has a role in remodelling the yolk sac vascular plexus (Porcher et
al., 1996; Robb et al., 1995; Shivdasani et al., 1995; Visvader et al.,
1998). Replating studies with Scl -/- ES cells have shown that
embryoid bodies derived from these cultures do not develop bi-
lineage blast colonies. Instead they form a transitional colony that
contains mesodermal cells together with hematopoietic and vascu-
lar precursors. They appear to represent a developmental step,
intermediate between ventral mesoderm and the hematopoietic/
endothelial lineages (Choi et al., 1998; Robertson et al., 2000). An
interpretation of this work is that the transitional cell represents a
stage of hemangioblast development that requires SCL for further
maturation. In zebrafish, overexpression of scl results in expansion
of cells that express hematopoietic and vascular markers (Gering
et al., 1998). These data together with that which shows partial
rescue of the cloche hematopoietic and vascular defects by scl
(Liao et al., 1998) supports a role for Scl in hemangioblast function.

Primitive hematopoiesis in the zebrafish occurs within the
embryo, in a region located between the notochord and endoderm
of the trunk called the intermediate cell mass (ICM). It also
develops anteriorly in the paraxial mesoderm over the yolk cell and
posteriorly in a small ventral cluster of cells in the developing tail
referred to as the posterior blood island (Al-Adhami and Kunz,
1977; Detrich et al., 1995; Thompson et al., 1998). The earliest
expression of hematopoietic genes, including gata-2 and scl,
occurs in bilateral stripes within the lateral plate mesoderm at
approximately the 3 somite stage or 11 hours post-fertilisation
(hpf). Gata-1 expression appears slightly later at the 5 somite stage
and by 12 somites βE3-globin expression commences. At the 18
somite stage (around 18 hpf), the bilateral stripes have fused
anteriorly and by 23 hpf, they have converged to form the ICM
(reviewed in Amatruda and Zon, 1999). The ICM is intraembryonic
and is functionally equivalent to the extraembryonic yolk sac blood
islands of higher vertebrates. The embryonic hematopoietic sys-
tem undergoes further development when cells from the ICM
migrate anteriorly prior to the onset of circulation. It has been
proposed that these cells populate the dorsal mesentery and the
ventral wall of the dorsal aorta (Detrich et al., 1995). It has been
further suggested that the ICM forms two developmentally distinct
compartments, where cells from the anterior ICM exit onto the yolk
and establish the primitive circulation, and cells from the posterior
ICM enter the circulation later (Amatruda and Zon, 1999; Thomp-
son et al., 1998). A number of gene expression domains potentially
demarcate these regions where, for example, gata-2 and scl
expression, but not gata-1, extend ventrally at 24 hpf (Amatruda
and Zon, 1999; Detrich et al., 1995; Thompson et al., 1998). By
using techniques such as lineage tracing, the sites and timing of the
establishment of zebrafish hematopoiesis and the nature of ICM
sub-compartmentalization will be elucidated. In 48 hpf embryos,
cells that express c-myb are found scattered along the ventral wall
of the dorsal aorta; an expression pattern analogous to that
observed in the progenitors of definitive hematopoiesis within the
aorta-gonad-mesonephros (AGM) region of mammals (Thompson
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et al., 1998). These cells may represent the first definitive hemato-
poietic precursors in zebrafish. Later on, the site of definitive
hematopoiesis shifts to the kidney, although some hematopoietic
activity may occur in the spleen (Amatruda and Zon, 1999).

This review describes our application of both forward and
reverse genetics in zebrafish to obtain further understanding of
molecular events involved in the development of the hematopoietic
and vascular systems. We focus on a member of the BMP family
of genes, Gdf6a/radar, that appears to be involved in vascular
development and on two members of the Runx family of transcrip-
tion factors that function in early hematopoiesis. We also outline
our strategy for establishing the zebrafish as a valid model in which
to study human leukemia.

Beyond the Horizon: Gdf6/radar and its Role in
Vasculogenesis

The BMPs and growth and differentiation factors (GDFs) form the
largest gene group within the TGF-β family (see review by Hogan,
1996). The BMPs are instructive molecules that function during
embryonic development and in adult tissue homeostasis (Massague,
2000). There are two broad areas of interest concerning the
biological function of BMPs. One centers on the mechanisms by
which cell fates and axes are determined by the antagonistic
interactions between BMPs and other secreted proteins, such as
noggin, chordin and follistatin. The second relates to how cells
interpret BMP signals. The interaction of BMPs and antagonistic
molecules has often focussed on mechanisms by which a
morphogen gradient is interpreted by cells. This process leads to
the formation of different cell types arranged in a defined spatial
distribution (Gurdon and Bourillot, 2001). With regard to BMP
signaling, there have been numerous cross-talk and feedback
loops described, all of which result in an activated Smad translocat-
ing from the cytoplasm to the nucleus and binding to the promoter
of a specific target gene (Massague, 2000).

We have an interest in the function of members of the Gdf5, 6,
7 subgroup of BMPs (Davidson et al., 1999). The mouse Gdf5, 6,
and 7 genes form a closely related subgroup of the TGF-β family
and were originally isolated from genomic DNA by a degenerate
PCR approach. Homologous genes have been identified in mam-
mals, Xenopus and zebrafish (Bruneau and Rosa, 1997; Chang
and Hemmati-Brivanlou, 1999; Chang et al., 1994; Davidson et al.,
1999; Rissi et al., 1995; Storm and Kingsley, 1996; Wolfman et al.,

1997). In mammals, members of this subgroup have been impli-
cated in cartilage and tendon formation during embryonic develop-
ment. Gdf5 was mapped to the region of mouse chromosome 2 that
contains the brachypodism mutation (Storm et al., 1994). Muta-
tions in Gdf5 were found to be responsible for the brachypodism
phenotype, whereas mutations in the human ortholog (known as
CDMP1), cause the phenotypically similar human disorder Hunter-
Thompson type chondrodysplasia (Thomas et al., 1996). Targeted
disruption of the mouse Gdf7 locus results in hydrocephalus and a
defect in the development of dorsal commissural neurons (Lee et
al., 1998).

The zebrafish gdf5, 6, and 7 genes have been isolated and
genetically mapped (Bruneau and Rosa, 1997; Davidson et al.,
1999; Rissi et al., 1995). We have described the phylogenetic
relationships of this gene family in zebrafish, and the expression of
gdf7 (Davidson et al., 1999). There has been an ancestral duplica-
tion of the Gdf6 gene resulting in two genes, Gdf6a (radar) and
Gdf6b (dynamo). There is a complex embryonic pattern of expres-
sion of gdf6a/radar in the eye, neural tube, dorsal fin and hypochord
(Rissi et al., 1995). We have re-examined the expression pattern
of this gene, focussing our attention on its expression in the
primitive gut endoderm, the ventral trunk and the hypochord (Fig.
1A). These expression domains lie immediately adjacent to, and
flank, the developing axial vasculature that includes the dorsal
aorta and posterior cardinal vein (Fig. 1B). The pattern of expres-
sion has led us to consider whether Gdf6a/radar has a role in early
hematopoiesis at the level of the hemangioblast, or whether it may
function later in hematopoiesis and/or vasculogenesis.

Several studies have demonstrated that in zebrafish, the trunk,
notochord, hypochord and endoderm are required for formation of
the dorsal aorta and posterior cardinal vein (Fouquet et al., 1997;
Sumoy et al., 1997). The hypochord is found in fish, lampreys and
amphibians and is derived from endoderm. It is a transient, rod-like
structure consisting of a row of single cells positioned ventral to the
notochord, and it has been shown that signals from the notochord
directly influence hypochord development (reviewed in Cleaver
and Krieg, 2001). The position of the hypochord and its close
association with the dorsal aorta has led to the idea that it is
involved in patterning development of this vessel. A number of
genes with defined vasculogenic roles, such as VEGF and Ang-1,
are expressed in the hypochord (Cleaver et al., 1997; Eriksson and
Lofberg, 2000; Pham et al., 2001).

To determine the function of Gdf6a/radar, we have adopted

Fig. 1. Gdf6a/radar is expressed in domains that flank the developing axial vasculature. Whole mount in situ hybridizations were performed with gdf6a/
radar and flk-1 RNA probes. Lateral views, anterior to left. (A) Expression of gdf6a/radar in wild type, 24 hpf embryo. Arrow, hypochord; arrowhead, primitive
gut endoderm. (B) Expression of the endothelial cell receptor tyrosine kinase flk-1 in wild type, 24 hpf embryo. Arrow, posterior cardinal vein; arrowhead,
dorsal aorta.
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several approaches. When Gdf6a/radar is overexpressed, em-
bryos exhibit a ventralized phenotype typified by expansion of the
ICM (Hall et al., unpublished observations). Furthermore, a delay
in the normal midline convergence of cells that express scl is
observed, together with absence of the notochord. These features
are reminiscent of those seen in the mutants floating head and no
tail (Sumoy et al., 1997), and raise the possibility of a chemotactic/
migratory role for Gdf6a/radar during establishment of the ICM.

A further insight into Gdf6a/radar function has been obtained
using antisense morpholino-modified oligonucleotides
(morpholinos) to inhibit gene translation. Embryos depleted of
Gdf6a/radar were phenocopies of the rdrD1 deletion mutant (Delot
et al., 1999), where areas of neuroectodermal cell degeneration
occurred suggesting a role for Gdf6a/radar in maintaining the
identity of the dorsal-most neural tube and possibly some neural
crest cells (Hall et al., unpublished observations). A striking result
has been the identification of circulatory defects in the morpholino-
injected embryos. Visualization of the defects was possible using
microangiography, and these ranged from an absence of trunk
circulation, to subtle changes within the intersegmental vessels.
Fig. 2 shows an example of the vascular leakiness that was
observed. Interestingly, embryos generated by morpholino-knock-
down of VEGF-A (Nasevicius et al., 2000), show many features in
common with the GDF6a/radar-depleted embryos, raising the
possibility of an intersecting role for these molecules in axial
vessel formation. We hypothesize that GDF6a/radar functions in
the maintenance of vessel integrity, rather than in the initial
formation of vessels. This work raises questions as to the inter-
play between the GDF6a/radar and VEGF/Flk-1 signaling path-
ways.

A model for GDF6a/radar function in vasculogenesis is shown
in Fig. 3, where signals from the hypochord and primitive gut
endoderm establish vascular integrity. Interest lies in defining the
signaling pathways that intersect with GDF6a/radar to augment
its vascular function. It is very apparent that growth factor/
cytokine signaling pathways are not insulated biological systems
but are components of a dense, highly interconnected network.
Candidate molecules for interaction with GDF6a/radar are the
Tie2 ligand Ang-1, the Flk-1 ligand VEGF and possibly the ETS-
domain transcription factor Fli-1. Studies in Ang-1 and Fli-1
knockout mice have suggested roles for these molecules in
establishing vascular integrity (Sato et al., 1995; Suri et al., 1996).

A further function for Ang-1 is its role as a survival factor for
endothelial cells (Kwak et al., 1999). Fli-1 is expressed in sites of
zebrafish vasculogenesis, and genetic analyses of several mu-
tants have confirmed its likely role within the vascular compart-
ment (Brown et al., 2000). Ang-1 is expressed in the hypochord,
VEGF is expressed in both the hypochord and ventral somites,
and Fli-1 is endodermally expressed. A recent intriguing observa-
tion, indicative of convergence within this field, is the connection
between VEGF expression and Cbfa1/Runx2. It has been shown
that Cbfa1/Runx2 is a necessary component of a genetic program
that regulates VEGF during bone formation (Zelzer et al., 2001).
The expression domains of all of these genes fall within the range
of GDF6a/radar signaling.

Runx1 as a Critical Regulator of
Developmental Hematopoiesis/Vasculogenesis

The discovery of genes such as AML1 (RUNX1) and SCL, that
are frequently rearranged in human leukemia, led to predictions
that these molecules may have important functions in normal
hematopoiesis (reviewed in Downing et al., 2000). These predic-
tions have spawned many investigations, using different model
systems, that have placed such genes at particular sites within the
hematopoietic transcriptional hierarchy. In this section we review
our studies of two members of the Runx family of transcription
factors, using the zebrafish as a system where early events in
hematopoiesis/vasculogenesis are particularly accessible.

Runt domain (RD) proteins are a family of conserved transcrip-
tion factors found in Drosophila (Runt and Lozenge), spiders, sea
urchins, Xenopus (Xaml) and other vertebrates (Downing, 1999;
Speck, 2001). A preferred nomenclature to describe the verte-
brate genes has been adopted where they are called Runx genes.
All previous names are collated as follows: RUNX1 = AML1,
PEP2aB, CBFa2; RUNX2 = AML3, PEP2aA, CBFa1 and RUNX3
= AML2, PEP2aC, CBFa3. The defining feature of this family is the
RD, a conserved 128 amino acid motif responsible for both
sequence-specific DNA binding and for dimerization with an
unrelated partner protein. This partner protein, termed core bind-
ing factor β (CBFβ), is encoded by a single gene in mammals,
while the Drosophila genome contains at least two homologous
genes, Brother (Bro) and Big-brother (Bgb) (Canon and Banerjee,
2000). The CBFβ proteins do not directly bind DNA, but modulate

Fig. 2. Loss of vessel integrity in Gdf6a/radar-depleted embryos. Microangiography was undertaken with fluoresceinated latex beads in 50 hpf wild type
(A) and 50 hpf gdf6a/radar morpholino-injected embryos (B). Lateral views, anterior to left. Leaks occurred in the trunk vasculature as indicated by the large
arrowhead in B. DA, dorsal aorta; PCV, posterior cardinal vein; Se, intersegmental vessel; DLAV, dorsal longitudinal anastomotic vessel.
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The phenotype of Runx1 knockout mice positions Runx1 at the
base of a transcriptional hierarchy, where it is expressed at the
earliest stage of the definitive hematopoietic program. By using β-
galactosidase-marked Runx1, thus enabling the tracking of Runx1
expression in mouse development, it has been shown that ex-
pression first occurs at day 7.5 in the extraembryonic mesodermal
cells and then transiently in primitive erythrocytes of the develop-
ing blood islands at day 8.0 (North et al., 1999). At day 8.5 of
gestation, Runx1 expression was observed in a small population
of endothelial and hematopoietic cells dispersed throughout the
yolk sac, perhaps representing definitive hematopoietic precur-
sors. Following a further two days of gestation (day 10.5), Runx1
is expressed in the AGM where definitive hematopoietic stem
cells develop. Analysis of both AGM and fetal liver cells demon-
strated Runx1 expression in a population with the c-kit+/CD34+

cell surface phenotype, which is that of long-term repopulating
stem cells.

The expression of Runx1 in developing primitive erythroblasts
is interesting, given the absence of reported defects in primitive
hematopoietic development in Runx1 knockout mouse embryos.
These data suggest that either Runx1 is expressed, but not
essential, in primitive hematopoiesis, or that an as yet undetected
defect exists in this lineage. Studies in other systems have shed
some light on this issue. Forced expression of the Xenopus Runx1
homolog Xaml has been shown to block both primitive and
definitive hematopoiesis in Xenopus (Tracey et al., 1998).
Transgenic mice expressing a chimeric protein CBFβ-MYH11
have impaired primitive erythropoiesis, as well as a block in
definitive hematopoiesis (Castilla et al., 1996). CBFβ-MYH11 was
originally identified from a leukemic translocation and is thought
to function by sequestering Runx1 in the cytoplasm. In a recent
study, embryoid bodies from Runx1 -/- ES cells were analyzed for
primitive erythroid, definitive erythroid, myeloid and blast colony-
forming cell potential. Besides demonstrating a complete block in

Fig. 3. A model for the role of Gdf6a/ radar signaling, from the
hypochord and primitive gut endoderm, in establishing vascular integrity.
Gdf6a/radar is expressed in the hypochord and primitive gut endoderm
(purple). Gdf6a/radar (purple arrows), possibly together with Vegf and
Ang-1, provide signals for the maintenance of integrity of the dorsal aorta
and posterior cardinal vein (red circles).

DNA binding by RD proteins through an undescribed mechanism
(Wheeler et al., 2000). The mechanism of transcriptional regula-
tion by RD proteins centers around their role as activators or
repressors, with an emerging view that these functions are
dependent upon the organization of a particular promoter/en-
hancer in a specific cell type at a certain time (Wheeler et al.,
2000). Evidence for a RD transcriptional activation role arose
through investigation of the sex-lethal (Sxl) early promoter, the
pair-rule gene fushi tarazu and, in vertebrates, the regulation of T
cell receptor genes, the M-CSF receptor, myeloperoxidase,
osteocalcin and murine leukemia virus enhancer cores (Wheeler
et al., 2000). There is evidence that Runx3 cooperatively acti-
vates BMP signaling, with Smad binding leading to transcriptional
activation (Massague, 2000). The repressive effects of RD pro-
teins are most widely seen in the regulation of a number of genes
during embryogenesis, such as engrailed, orthodenticle, hairy
and even-skipped, with the repressive mechanism operating in
the last two genes via a co-repressor groucho (Canon and
Banerjee, 2000; Wheeler et al., 2000).

The function of the Runx1 gene in normal hematopoietic
development was first established when targeted disruption of
this gene in mice caused a complete block in the establishment of
definitive hematopoiesis (Okuda et al., 1996; Wang et al., 1998b).
The mice lack definitive erythroid, myeloid and megakaryocytic
cells. Yolk sac hematopoiesis was initiated, however embryos
died in utero by 11-12.5 days of gestation. Prior to death, the fetal
liver rudiment contained primitive, nucleated erythroblasts. A
second developmental defect described in these mice was hem-
orrhaging in the central nervous system (CNS), preceded by
perivascular edema and apoptosis in the CNS capillaries, sug-
gesting a vascular defect. Recent work by Takakura et al. (2000)
has suggested that the hemorrhagic phenotype observed in
Runx1 knockout mice is a non-cell autonomous defect in angio-
genesis, caused by a lack of hematopoietic stem cells capable of
secreting vascular regulators such as Ang-1.

Fig. 4. Expression of runx1 and runx 3 in early hematopoiesis. (A)

Dorsal view of whole embryo, anterior to left, 12 hpf . (B,D) Posterior halves
of embryos, lateral views, anterior to left, 24 hpf. (C)Whole embryo,
anterior to left, 12 hpf. Arrowhead in A, lateral plate mesoderm; arrowhead
in B, ventral wall of dorsal aorta; arrowhead in C, trigeminal ganglia;
arrowhead in D, intermediate cell mass.

A B
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definitive hematopoiesis, the Runx1-/- embryoid bodies generated
significantly fewer primitive erythroid precursors and BL-CFC
than wild type controls (Lacaud et al., 2001). This work suggests
that Runx1 may function at an earlier stage in the hematopoietic
pathway than predicted from knockout embryo studies, perhaps
at the level of the hemangioblast.

Research from our group provides further insight into the
function of Runx1 within the developing hematopoietic and vascu-
lar systems. Following the isolation of zebrafish runx1, its spatial
and temporal pattern of expression in wild type and mutant em-
bryos has been investigated, along with definition of function using
transgenic approaches and morpholino-mediated gene knockdowns
(Kalev-Zylinska et al., 2002). Results from this work form the basis
of an ethylnitrosourea (ENU) genetic screen, with mutants se-
lected on the basis of loss of runx1 expression as assessed by
whole mount in situ hybridization. This is being undertaken to
identify genes involved in the regulation of runx1.

Two zebrafish homologs of Runx genes (runxa and runxb) have
been reported previously (Kataoka et al., 2000). The Runx1
ortholog we have isolated is identical at the amino acid level to
runxa. Zygotic runx1 expression commences at 12 hpf in two
bilateral stripes within the lateral plate mesoderm (Fig. 4A). Runx1
is expressed robustly during development of the ICM. At 24 hpf,
expression in the posterior ICM begins to diminish and a new
expression domain occurs in the ventral wall of the aorta (Fig. 4B).
Runx1 expression overlaps with that of scl in the lateral plate
mesoderm, however expression domains become increasingly
distinct as development proceeds. In addition, we have shown that
runx1 partially rescues hematopoietic defects in cloche embryos,
positioning runx1 downstream of cloche in a pathway of hemato-
poietic development (Kalev-Zylinska et al., 2002).

Runx1 also appears to be required for vascular development in
zebrafish. Evidence for this comes from embryos injected with
runx1-morpholinos. The most striking abnormality of runx1-de-
pleted embryos was the lack of normal circulation at 48 hpf, with
accumulation of erythroid cells in the aorta and ventral tail (Fig. 5

A,C). In parallel, flk-1 expression was shown to be perturbed, with
missing segments of intersomitic vessels and atypical vessel
architecture (Kalev-Zylinska et al., 2002).

A characteristic of the runx1-morpholino embryos was enlarge-
ment of the ICM region, where cells accumulating at 24 hpf were
scl-positive with blast-like morphology. These cells remained the
dominant population until 48 hpf, and no scl-positive cells were
observed in the circulation. This suggests that loss of Runx1 results
in an arrest or marked delay in blood maturation. In addition,
embryos showed evidence of a block in the establishment of
definitive hematopoiesis, with a marked reduction in c-myb expres-
sion within the dorsal aortic wall. These results provide confirma-
tion that Runx1 function in the zebrafish largely recapitulates that
observed in other vertebrates, however the gene also appears to
play a role in vasculogenesis. Although not discussed here, our
analysis of Runx1 function has provided insights into the role of this
gene in neurological development.

The Neglected Triplet of the Family, Runx3, finds its
Place

In contrast to Runx1 and Runx2, where a considerable amount
of information has been obtained from a broad range of studies
including gene knockouts, the function of Runx3 has been less well
characterized. Evidence thus far suggests a role within the he-
matopoietic system and in leukemogenesis. Runx3 is expressed in
hematopoietic cell lines and its expression is up-regulated in a
leukemic cell line following retinoic acid-induced differentiation (Le
et al., 1999). Recently, evidence has been presented that supports
a role for Runx3 during mouse embryogenesis (Levanon et al.,
2001). Interaction between the TGFβ signaling molecule Smad3
and Runx3 has been demonstrated (Hanai et al., 1999; Zhang and
Derynck, 2000). Expression of RUNX3 in mononuclear blood cells
may have prognostic value in patients with the M2 subtype AML;
preservation of expression was shown to confer a more favourable
outcome (Kornblau et al., 1997).

As part of our interest in understanding the role of Runx family
genes in hematopoiesis, we isolated zebrafish runx3. At 12 hpf
runx3 is not expressed in hematopoietic tissues, but is observed in
the developing nervous system (Fig. 4C). This contrasts with runx1
expression that is present at this stage in the lateral plate meso-
derm. At 24 hpf, runx3 expression is positioned in the anterior and
posterior ICM (Fig. 4D). As with runx1, expression of runx3 is
reduced in cloche embryos, placing the gene in a pathway down-
stream of cloche (Kalev-Zylinska et al., unpublished). When the
function of Runx3 is abrogated by morpholino oligonucleotides,
embryos demonstrate a marked reduction in circulating blood cells
(Fig. 5 B,C). This phenotype has been quantitated using video-
assisted image capture to count circulating blood cells on the yolk.
Analysis of c-myb expression at 48 hpf revealed a reduction in this
marker of definitive hematopoiesis in the dorsal aorta. Expression
of the flk-1 vascular marker was normal in these embryos. Our
interpretation of this work is that Runx3 is required for the mainte-
nance of early blood cell numbers and for definitive hematopoiesis,
but not for establishment of the vasculature (Kalev-Zylinska, un-
published). These studies have also provided insight into the role
of Runx3 in neurological development, and raised interesting
questions regarding the convergent regulation of hematopoiesis
and neuropoiesis.

Fig. 5. Runx1 and runx3 morpholino-injected embryos demonstrate

abnormalities in hematopoiesis. Lateral views of runx1 (A) and runx3 (B)

morpholino-injected embryos, 24 hpf, and control embryo, 24 hpf (C). All
anterior to left. Arrowhead in (A), accumulation of erythroid cells in ventral
tail; arrowhead in (B) indicates marked reduction in circulating erythroid
cells (compare with arrowhead in C).
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Zebrafish permit Further Dissection of Hematopoiesis
and Leukemogenesis

With the completion of the human genome sequence, and the
current efforts to sequence the zebrafish genome, one of many
challenges is to develop approaches that systematically determine
gene function. By adopting phenotype-driven mutagenesis screens,
large numbers of mutant phenotypes can be screened to assess
gene function without making any prior assumptions regarding the
genes that constitute a given pathway. Mutagenesis screens
represent a powerful approach to identify novel genes and path-
ways.

Previous large scale mutagenesis screens in zebrafish have
produced a sizeable number of mutants, many of which are
currently being genetically mapped. Approximately 26 zebrafish
mutants have been described that affect hematopoiesis. These
mutants were recognized on the basis of anemia, and as the genes
underpinning these mutants have been isolated, their function has
been predominantly in erythropoiesis (Amatruda and Zon, 1999).
The mutant genes have been cloned by a combination of positional
and candidate strategies. These include heme biosynthetic en-
zymes (Brownlie et al., 1998; Wang et al., 1998a; Childs et al.,
2000), a structural protein (Liao et al., 2000) and a novel iron
transporter (Donovan et al., 2000). There are few mutants avail-
able that affect early events in hematopoietic stem cell develop-
ment. The runx1 screen that we are undertaking has potential to fill
this gap.

Zebrafish mutants provide models for human diseases, and will
be important in developing an understanding of the pathophysiol-
ogy of disease. The examples above provide validation that
forward genetic approaches result in mutants that resemble hu-
man hematopoietic disease. The same principles are being ap-
plied for diseases occurring in other organ or tissue systems
including heart, CNS, kidney, pancreas and muscle. In addition,
these approaches are being applied to gain insight into behavioural
abnormalities.

An approach we have developed for the exploitation of zebrafish
as a model of human disease is to express genes with known
pathophysiological consequences in zebrafish embryos and moni-
tor the resulting cellular and genetic outcome. The RUNX1 gene
was first isolated from the chromosome 21 breakpoint in
t(8,21)(q22;q22) acute myeloid leukemia (AML; Miyoshi et al.,
1991). Approximately 40% of patients with the M2 subtype of AML
have this translocation, which results in the formation of a chimeric
protein known as RUNX1-CBF2T1 (formerly AML1-ETO). Other
translocations and point mutations have been described that
involve RUNX1 (Downing, 1999). Studies in mice have shown that
expression of a RUNX1-CBF2T1 fusion protein during embryogen-
esis causes embryonic lethality; probably by dominant interference
with normal RUNX1 function (Okuda et al., 1998; Yergeau et al.,
1997).

We have expressed a human RUNX1-CBF2T1 transgene in
zebrafish embryos (Kalev-Zylinska et al., 2002). This has resulted
in two major abnormalities: the defective development of blood and
circulation, and internal hemorrhages. RUNX1-CBF2T1-injected
embryos lacked a normal circulation and accumulated blood cells
in the aorta and ventral tail (Fig. 6 A,B). Numbers of blood cells were
reduced in the injected embryos and overall the defects were
remarkably similar to the runx1 morpholino-injected embryos shown

in Fig. 5A. Hemorrhages were found in the pericardium and CNS,
where areas of intracerebral and intraventricular bleeding were
observed. Cells that accumulated in the ventral tail of RUNX1-
CBF2T1-injected embryos had a blast-like morphology, with dys-
plastic features (Fig. 6 C,D). This work has demonstrated that the
zebrafish is likely to be a valuable alternative model for studies of
t(8,21)-mediated leukemogenesis. We intend taking a genetic
approach towards identifying molecules that interact with RUNX1-
CBF2T1 to progress leukemia. To move in this direction, we are
developing a zebrafish line with an inducible RUNX1-CBF2T1
transgene.

Lessons from Zebrafish

Since adopting the zebrafish system in the mid 1990s, we have
undertaken both forward and reverse genetic approaches to achieve
our goal of understanding the molecular events involved in the
regulation of developmental hematopoiesis and vasculogenesis.
In addition to the work described here, we have undertaken a
search for cDNAs encoding secreted molecules using a signal
sequence trap (SST) screen. This was based on analysis of
patterns of expression of SST clones using whole mount in situ
hybridization and has resulted in the isolation of a range of novel
and known molecules, a number of which have been genetically
mapped (Crosier et al., 2001). Some of these genes have been
investigated in more detail; for example, a member of the cadherin
family and its role in zebrafish pronephric development has been
described (Horsfield et al., 2002). In other research, we have
isolated zebrafish orthologues of a range of known mammalian
BMPs including BMP 9, 10 and 11 and have investigated their
function (Bland et al., unpublished). A continued interest in protein
tyrosine kinases in development has led to the isolation, genetic
mapping and partial functional characterization of zebrafish

Fig. 6. Expression of a human RUNX1-CBF2T1 transgene causes

disordered hematopoiesis. Lateral views of tail region, at 48 hpf of
RUNX1-CBF2T1-injected (A) and control (B) embryos. Anterior to left.
Arrow in A, entrapped cells; arrow in B, normal caudal circulation. (C) Cells
aspirated from ICM of RUNX1-CBF2T1-injected embryo at 48 hpf show
blast-like morphology. (D) Normal circulating cells at 48 hpf.
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Rooke (The Children’s Hospital, Boston), Ross Bland (Thomas Jefferson
University, Philadelphia) and former research fellows Anne Bardsley-Elliot,
Marta Jansa Perez and Jeff Greenwood also made important contributions.
The work has involved valued collaborations with Tony Celeste, Ashley
Dunn, Ed Lavallie, John McCoy, John Postlethwait, Lisa Racie-Collins and
Len Zon. Many people in the zebrafish community who have provided
reagents and advice. Kristina Maconaghie assisted greatly in preparing this
manuscript.
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