
 

Hydra, a fruitful model system for 270 years
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ABSTRACT  The discovery of Hydra regeneration by Abraham Trembley in 1744 promoted much 
scientific curiosity thanks to his clever design of experimental strategies away from the natural en-
vironment. Since then, this little freshwater cnidarian polyp flourished as a potent and fruitful model 
system. Here, we review some general biological questions that benefitted from Hydra research, 
such as the nature of embryogenesis, neurogenesis, induction by organizers, sex reversal, symbiosis, 
aging, feeding behavior, light regulation, multipotency of somatic stem cells, temperature-induced 
cell death, neuronal transdifferentiation, to cite only a few. To understand how phenotypes arise, 
theoricists also chose Hydra to model patterning and morphogenetic events, providing helpful 
concepts such as reaction-diffusion, positional information, and autocatalysis combined with lateral 
inhibition. Indeed, throughout these past 270 years, scientists used transplantation and grafting 
experiments, together with tissue, cell and molecular labelings, as well as biochemical procedures, 
in order to establish the solid foundations of cell and developmental biology. Nowadays, thanks to 
transgenic, genomic and proteomic tools, Hydra remains a promising model for these fields, but 
also for addressing novel questions such as evolutionary mechanisms, maintenance of dynamic 
homeostasis, regulation of stemness, functions of autophagy, cell death, stress response, innate 
immunity, bioactive compounds in ecosystems, ecotoxicant sensing and science communication. 
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The heuristic value of the Hydra model system

In the early 18th century the word biology was not yet in use 
but the nature of living organisms and their evolutionary relation-
ships was the focus of interest for philosophers and naturalists, 
as evidenced by their pioneering efforts to develop new tools 
such as microscopes that would allow finer observation (Palm, 
1996). The microscopic observation of organisms taken in the field 
undoubtedly helped develop morphological keys to sort between 
the animal and vegetal kingdoms and to group them into phyla 
(Linnaeus, 1758). Among the ambiguous species that could not be 
easily classified were the seawater corals that looked like flowers 
(Watson, 1753; McConnell, 1990) and the freshwater Hydra polyp 
that was considered to exhibit both animal and vegetal features. 
For example, Hydra easily reproduces asexually through budding, 
a trait frequently assigned to plants or fungi. 

Having observed some Hydra polyps in a pond, Abraham Trem-
bley (1710-1784) (who had received a PhD in mathematics from 
the University of Geneva (Switzerland) and was now educating 
the children of the Count of Bentick in the Netherlands) decided 
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to solve that problem by testing their capacity to regenerate, as-
suming that if Hydra regenerates, then it should be considered a 
plant, but if it does not, then it should belong to the animal kingdom 
(Trembley, 1744). Thus, he cut this little organism into two pieces 
and observed during the next days that the Hydra had regener-
ated any cut away part. However, Trembley did not conclude that it 
was a plant as he had carefully noted several behaviors that were 
not consistent with it being a plant. Indeed he noted that Hydra 
actively capture their food with their tentacles, contract upon touch, 
slowly but efficiently walk (Trembley, 1744). All these behaviors 
that indicate the presence of nervous and digestive systems, are 
clear hallmarks of animals traits.

Abraham Trembley understood that that he had made a major 
discovery, i.e. an animal is able to fully regenerate any missing part 
of its body, and thereafter spent much time and energy convincing 
his peers (Réaumur, 1741; Trembley, 1744; Ratcliff, 2004, 2012). 
Later on it became clear that together with jellyfish, sea anemones 
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and corals, Hydra form a sister phylum to Bilateria named Cnidaria 
(Haeckel, 1896; Hyman, 1940; Collins et al., 2006). In this issue 
Marc Ratcliff highlights a novel and influential aspect of Abraham 
Trembley’s contribution to the development of experimental sci-
ences. Indeed, with the accurate analysis of Hydra behaviors and 
tissues, he set up the tools and the conditions to investigate the 
mysterious laws of aquatic life in his study and no longer in the 
field, promoting thus the development of marine biology as an 
experimental, rather than solely observational, science (Ratcliff, 
2012). This article is illustrated with historical drawings archived 
at the Public Library of Geneva, selected in 2010 for an exhibition 
entitled “Abraham Trembley and the birth of marine zoology”.

Hydra a a model system to understand how developmen-
tal programs remain active or activable in adult organisms 

In the late 19th century Hydra together with other hydromedusae 
emerged as fruitful model systems for physiology (Greenwood, 
1888), cell biology (Weismann, 1883; Hadzi, 1909) and develop-
mental biology (Rand, 1899; Tannreuther, 1908; Browne, 1909; 
Hyman, 1928). Indeed, Hydra polyps provided an experimental 
framework to study the mechanisms that regulate the maintenance 
of homeostasis even in extreme conditions (starvation, overfeeding) 
as well as those driving the reactivation of developmental programs 
after bisection or during budding (Fig. 1, Fig. 3).

Transplantation strategies to measure organizing activities 
and regenerative potential

Transplantation experiments performed on Hydra polyps were 
quite common at the turn of the 20th century. Ethel Browne, in-
spired by the recent results of her colleagues, developed a novel 
strategy that allowed her to discover “induction” (Browne, 1909) 
an essential principle in embryology. Although she never used the 
word “induction” herself, she understood and demonstrated the 
complexity of this process. First she cut a “tentacle with a small bit 
of peristome (head tissue) at its basis” from the donor and inserted 
it in a slit made along the body column of the host. In the following 
days she observed the development of an ectopic “hydranth” on 
the body column of the host, in 10 grafts out of 13 demonstrating, 
thus the robustness of the process (see her drawings reproduced 
in Bossert and Galliot in this issue).

Second, she wanted to trace the origin of the cells forming this 
ectopic “hydranth”, and for that purpose she got the idea to per-
form transplantation between pigmented and depigmented Hydra 
of the same species. Indeed, a recent report had just identified a 
simple way to get rid of the “green bodies” of Hydra viridis (Whit-
ney, 1907). That way she nicely demonstrated that the grafted 
tissue actually recruits cells from the host to form the ectopically 
developing structure and she wrote: “From these experiments the 
conclusion must be drawn that it is principally the material of the 
body wall of the stock and not the hydranth material of the graft 
that forms the new hydranth” (see Fig. 2). She also showed that 
in addition to the apical region of the polyp, the regenerating head 
and the presumptive head region in the growing bud do exhibit 
organizer activity. 

This important work was published in 1909, 15 years before 
the report of Spemann and Mangold on the organizer activity of 
the dorsal lip of the amphibian embryo (Spemann and Mangold, 
1924) Unfortunately Spemann who was aware of Ethel Browne’s 
work and might have been inspired by her experiments, never 
cited her work (Lenhoff, 1991). Despite this lack of recognition, 
her transplantation approach opened an avenue and largely con-
tributed to promote Hydra as a powerful model in developmental 
biology (Fig. 3). 

Parallel Head activation (HA) and Head inhibition (HI) gradients 
along the body column

Because of the multiple types of grafting she tested, Ethel Browne 
understood that the grafted tissue provides the stimulus to develop 
an ectopic axis, whereas the cells of the host predominantly con-
tribute to the formation of the induced structure, two criteria that 
fulfills the definition of an organizer (Fig. 2). However she did not 
figure out that the host might be able to inhibit the activity of the 
grafted tissue. Twenty years later the concepts of Head Activation 
and Head Inhibition emerged, represented as one pair of parallel 
gradients (Mutz, 1930; Child, 1932; Yao, 1945). Later on Gerald 
Webster and Lewis Wolpert in London, Harry MacWilliams in 
Worcester, and Tsutomu Sugiyama in Mishima, quantified these 
graded activities along the body column, showing maximal HA 
and HI levels at the apex (Webster, 1966a, b; Sugiyama, 1982; 
MacWilliams, 1983a, b; Takano and Sugiyama, 1983). 

In the 1970s, with the aim of identifying the genetic basis of de-
velopmental mechanisms in Hydra, Toshitaka Fujisawa and Tsutomu 
Sugiyama decided to perform a screen to isolate Hydra mutants 
(Sugiyama and Fugisawa, 1977a, b; Sugiyama and Fujisawa, 
1978a, b). Hiroshi Shimizu in this issue recapitulates the results 
they obtained by measuring precisely thanks to lateral transplanta-
tion experiments the slopes of the HA and HI gradients along the 
body column of a collection of Hydra strains isolated from the field 
or produced through breeding (Shimizu, 2012). To identify the cell 
types regulating HA and HI, Fujisawa and Sugiyama then applied 
the reaggregation technique developed by Richard Campbell 
(Marcum and Campbell, 1978) to produce chimeric animals made 
up of cell lineages isolated from highly different strains in terms of 
HA and HI slopes. With this sophisticated strategy they could thus 
deduce the role of each cell lineage and reached the conclusion 
that HI is primarily under the control of the endodermal epithelial 
cells with a slight modulation by the interstitial cells, whereas the 
HA gradient is directed by the ectodermal epithelial cells (Takano 
and Sugiyama, 1984; Shimizu, 2012). 

Fig. 1. The multiple aspects of biology that can be addressed thanks 
to the Hydra model system.
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Apical organizing activity versus self-organizing activity of the 
body column

A body of corroborating data obtained from lateral transplantation 
of tissues from the upper body column stresses that head formation, 
in this context, does not rely on organizer activity but rather on the 
self-organizing property of the grafted tissue (Yao, 1945; MacWilliams, 
1983b; Broun and Bode, 2002). The main difference is the recruit-
ment of host cells by the grafted tissue, and indeed the analysis of 
the tissues of the ectopic axis shows that upon grafting of the upper 
body column, the ectopic Hydra contains predominantly cells from 
the donor and not from the host, proving the low inductive activity 
of the graft. This is in sharp contrast with the results obtained when 
tissues from the hypostome, the head-regenerating tip or the growing 
bud are grafted (see above). The transient contact between a hypo-
stome and the body column of the host actually suffices to induce 
an ectopic axis, suggesting that signaling molecules (morphogens) 
are released during the period of contact (Broun and Bode, 2002). 
Wnt3, the ligand of the canonical Wnt pathway appears as the signal 
that sets up the organizing activity in the head (Broun et al., 2005; 
Gee et al., 2010). In this issue, Hans Bode details the criteria that 
define the head organizer and discusses the molecular mechanisms 
that might distinguish induction from self-organization (Bode, 2012).

Theoretical modeling of the principles of developmental biol-
ogy in Hydra

The tentacles immutably organized as a ring in Hydra likely 
inspired Alan Turing as he took this example of patterning, among 
others, to develop his model of reaction-diffusion and propose it as 
a model for the chemical basis of morphogenesis (Turing, 1952). 
This model of reaction-diffusion was itself used to develop several 
models describing positional information in Hydra, taking into ac-
counts the two pairs of activation and inhibition gradients that had 
been characterized experimentally (Wolpert, 1969; Gierer and 
Meinhardt, 1972). With the idea of identifying general principles for 
development, i.e. to translate the genetic information into patterns, 
Lewis Wolpert considered hydroid regeneration, sea urchin gastrula-
tion, epidermis patterning in insects and chick limb development to 
propose the unifying concept of positional information, whereby each 
cell receives an address corresponding to its position in a develop-
ing tissue/organ, i.e. in a co-ordinate system defined by reference 
points and boundaries (Wolpert, 1969). If Hydra is considered as 
a unipolar system, then the reference point for any cell along the 
body column would be the hypostome and a graded distribution of 

substances from the hypostome to any cell along the axis would 
provide this positional information. In fact there are two poles in 
Hydra and this positional information is supposed to be regulated 
by two pairs of linear parallel gradients, running opposite of each 
other, one for head activation / head inhibition and the second for 
foot activation / foot inhibition. 

Few years later Alfred Gierer and Hans Meinhardt reinterpreted 
the Hydra transplantation data produced in the laboratory of Lewis 
Wolpert and deduced a molecular theory of biological pattern for-
mation based on autocatalysis and lateral inhibition that integrated 
the concepts developed by Turing first and later by Wolpert (Gierer 
and Meinhardt, 1972). In short they proposed a non-linear activa-
tion / inhibition model where the cross-talk between two types of 
substances would drive morphogenesis, activators that act locally 
and self-enhance their activity (auto-catalytic), inhibitors that re-
press activators (cross-catalytic) over long-range distance. If one 
assumes that these two types of molecules are distributed in the 
tissue with different concentrations and different source densities, 
then this activation-inhibition model, which is based on non-linear 
interactions, would support the two phases of morphogenesis, a 

Fig. 2. Representative transplantation experiments performed by 
Ethel Browne between pigmented and depigmented Hydra polyps. 
To depigment Hydra viridis that contain symbiotic algae (green), the pol-
yps are treated with 0.5% glycerine for three weeks to become “artificial 
white hydra”. All grafts were performed laterally at mid-body level, except 
when specified. (Exp 42) White tentacle with base (arrow) grafted on a 
green hydra showing the formation of an ectopic hydra with an important 
contribution of the host cells. (Exp 43) White tentacle with base grafted in 
the foot of a green hydra resulting in the formation of a minute hydranth. 
(Exp 44) Green tentacle without base grafted into a white hydra showing 
the lack of inducing activity and the absorbtion of the grafted tissue. (Exp 
45) Graft of a ring of green tissue (body column) that remains as a patch, 
with no inducing activity. (Exp 46) Graft of a complete green hydra on a 
white host showing that the green hydra keeps its individuality and gets 
displaced towards the basal pole. (Exp 47) Basal half of a green hydra 
grafted by its apical side at mid-body level on a white hydra; after 6 days 
this basal half has regenerated a head and is close to detach from the host. 
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fast one to establish a primary pattern (for example the organizing 
activity developed in few hours in the head-regenerating tip) and a 
slower one to differentiate the definitive structure. In case of Hydra, 
this model explains how de-novo patterns can arise, how any part 
of the body column can regenerate a complete animal.

In this issue, Alfred Gierer tells us how he moved from phys-
ics to microbiology, then to developmental biology, selecting the 
Hydra model system to develop concepts unifying the principles 
of development that can be applied to organisms more complex 
than Hydra, and finally to neurobiology (Gierer, 2012). He also 
discusses the role of mathematics to understand how cells gener-
ate real shapes, like stable cell sheets or evaginated structures. In 
the following review, Hans Meinhardt provides more experimental 
data that support the activation-inhibition model (Meinhardt, 2012), 
as the work of Ueli Technau et al., who showed on regenerating 
aggregates that activation concerns about 10 to 15 cells, i.e. a 100 
mm large region, whereas inhibitory activity extends over a 800-900 
mm distance (Technau et al., 2000). At the molecular level, Wnt 
signals (specially Wnt3) fulfill the requirements of an activator, 
however inhibitor molecules that would fit the model remain to be 
identified in Hydra. In developing vertebrates, some activator/inhibi-
tor couples such as Nodal/Lefty, involved in mesoderm formation 
and left/right patterning, fit well with the activation-inhibition model, 
indicating that indeed this model support developmental processes 
in eumetazoans.

Hydra - a model system for aging studies
An initial study on aging in Hydra was performed by Paul Brien in 

Paris who wanted to investigate the crosstalk between the asexual 
and sexual modes of reproduction (Brien, 1953). In two species, 
Hydra vulgaris and Hydra viridis, Brien noted that budding persists 
even in animals that undergo sexual differentiation; he also recorded 
that these animals did not seem to loose their fitness when surveyed 
over several years. In case of Hydra oligactis the result was dif-
ferent, animals exposed to cold induce their sexual differentiation, 
then rapidly stopped budding and after having laid eggs, become 
“exhausted” after three months and die. Although Brien did not 
use the words senescence or aging, two main conclusions could 
be deduced from his observations: 1) Hydra polyps maintained at 
room temperature exhibit no or very limited senescence, 2) Hydra 
oligactis that undergo sexual differentiation upon cold induction, 
rapidly die, providing thus a system where aging is inducible. These 
two aspects were indeed confirmed by independent studies: first 
the lack of senescence was tested in North America on cohorts of 
asexual Hydra vulgaris by Martinez (1998), second the inducibility 
of aging in Hydra oligactis was reproduced in Japan by Yoshida et 
al. (2006). In this issue Daniel Martinez and Diane Bridge discuss 
the role of proteins involved in the cellular stress response that 
are required to maintain homeostasis over a long term (Martinez 
and Bridge, 2012).

Hydra - a model system for stem cell biology

The biology of stem cells in Hydra: multipotency, sex deter-
mination and stemness
Hydra provides unique experimental conditions to investigate the 
biology of stem cells. Three distinct populations of continuously 
proliferating stem cells were characterized, epithelial endodermal 
and epithelial ectodermal stem cells that are each unipotent, i.e. 

providing epithelial cells that acquire specific features in the apical 
and basal regions. These epithelial stem cells that cannot replace 
each other, form two epidermal / gastrodermal sheets linked together 
by the extra-cellular matrix (named mesoglea) (Wood, 1961; Lentz, 
1966; Sarras, 2012). The third stem cell population named intersti-
tial stem cells, already identified as progenitors of the nematocyte 
lineage by Brauer (Brauer, 1891), actually provide progenitors for 
all cells of the nervous system, including the mechanosensory cells 
(named nematocytes or cnidocytes), but also for the gland cells of 
the digestive tract and for the germ cells when the animals follow 
the sexual cycle (Tardent, 1954; Brien and Reniers-Decoen, 1955; 
Burnett and Diehl, 1964; Diehl and Burnett, 1964; David and Murphy, 
1977; Sugiyama and Fujisawa, 1978a; Bode et al., 1987; Bosch 
and Davis, 1987; Bode, 1996). This means that the interstitial stem 
cells provide both somatic cell lineages and germ cells all along the 
life of the animal. Their self-renewal property was proven in clon-
ing experiments performed on aggregates made of cells treated 
with nitrogen mustard that are no longer able to proliferate, and in 
transplantation experiments performed on “epithelial” Hydra that 
no longer contain interstitial cells. In this issue three articles review 
our current knowledge about stem cells in Hydra, the first one by 
Charles David on the multipotency of the interstitial cells (David, 
2012), the second by Chiemi Nishimiya-Fujisawa on the germline 
stem cells and the sex determination in Hydra (Nishimiya-Fujisawa 
and Kobayashi, 2012) and the third one by Bert Hobmayer and col-
leagues who discuss the stemness-related genes that might help 
distinguish between these three stem cell populations (Hobmayer 
et al., 2012).

The Hydractinia model system, a close cousin but marine 
and colonial

Sexual development is not easily amenable to experimentation 
in Hydra and marine cnidarian organisms that provide an inducible 
system for sexual development always offered valuable experimental 
alternatives (Frank et al., 2001; Galliot and Schmid, 2002; Houlis-
ton et al., 2010). One of the best examples is the marine colonial 
hydrozoan Hydractinia used by August Weizmann to identify the 
germ plasm that he distinguished from the somatic stem cells. 
Weizmann thus proposed the germ plasm theory whereby only 
germ cells and not somatic cells contribute to the transmission of 
characters (Weismann, 1883). Today Hydractinia is a fruitful model 
system for stem cell biology as seen by the recent elegant work 
done by Millane et al., who ectopically expressed an Oct-4 related 
protein named Polynem in the epithelial cells and thus triggered the 
formation of neoplasm by reprogramming these epithelial cells to 
pluripotent interstitial cells (Millane et al., 2011). In this issue, Günter 
Plickert, Uri Frank and Werner Müller discuss the strength of the 
Hydractinia model system, not only for deciphering the mechanisms 
establishing stemness and cell reprogramming, but also, for ad-
dressing the role of Wnt signaling in developmental processes as 
well as the evolution of histo-compatibility (Plickert et al., 2012).

Cell to tissue signaling and vice-versa

 Cell culture has never been successfully established from any 
cnidarian organism thus far. However, Hydra provides an experi-
mental model system where cell behavior can be monitored in the 
context of an intact adult tissue. Indeed, Hydra is an organism that 
behaves as a whole, that can reactivate developmental programs 
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in a variety of contexts and that can now be manipulated so that as 
any cell lineage can be labeled thanks to the transgenic procedures 
recently established in the lab of Thomas Bosch (Wittlieb et al., 
2006; Khalturin et al., 2007; Siebert et al., 2008). All these proper-
ties would be lost in cell culture, which thus no longer appears es-
sential compared to the advantages provided by a 4D physiological 
and developmental system, and the possibility anyhow to test in 

heterologous systems the molecular properties of the Hydra genes.

Setting up the boundaries in adult and developing Hydra 
In this issue Angelika Boettger and Monika Hassel provide argu-

ments to uncover in Hydra some robust eumetazoan innovations 
that allow to set up boundaries between different morphogenetic 
fields (Bottger and Hassel, 2012). Firstly, and despite its apparent 

Fig. 3. Time line overview of the 300 first years of Hydra research. This timeline lists key findings in Hydra research and the author apologizes for not 
referring to more findings, due to space constraints. See the indicated authors for a more complete reviewing of the following topics: the first micro-
scopic view of Hydra and budding (Palm, 1996; Tannreuther, 1908; Hyman, 1928; Otto and Campbell, 1977a; Bottger and Hassel, 2012); the discovery 
of Hydra regeneration and its scientific impact (Trembley, 1744; Lenhoff and Lenhoff, 1986; Gierer, 2012; Ratcliff, 2012); digestion (Greenwood, 1888; 
Chera et al., 2006; Sher et al., 2008; Rachamim and Sher, 2012); sex determination, sex reversal and embryogenesis (Kleinenberg, 1872; Brauer, 
1891; Hertwig, 1906; Tannreuther, 1908; Goetsch, 1922; Hyman, 1928; Loomis, 1954; Zihler, 1972; Sugiyama and Fugisawa, 1977a; Martin et al., 1997; 
Nishimiya-Fujisawa and Kobayashi, 2012); tissue induction and organizing activity (Browne, 1909; Yao, 1945; MacWilliams, 1983a,b; Lenhoff, 1991; 
Broun and Bode, 2002; Bode, 2012); regeneration from reaggregated cells (Child, 1928; Noda, 1971; Gierer et al., 1972; Murate et al., 1997; Technau 
et al., 2000); the paradigmatic value of i-cell free (i.e. epithelial) Hydra (Diehl and Burnett, 1964; Campbell, 1976; Sugiyama and Fujisawa, 1978a); 
genetic analyses of developmental mechanisms (Sugiyama and Fujisawa, 1977a, b; Marcum and Campbell, 1978; Sugiyama and Fujisawa, 1978a, b; 
Shimizu, 2012); modeling of patterning (Turing, 1952; Wolpert, 1969; Gierer and Meinhardt, 1972; Wolpert et al., 1972; Gierer, 2012; Meinhardt, 2012); 
stem cells and stemness (David and Murphy, 1977; David and Plotnick, 1980; Bosch and David, 1987; Bode, 1996; Millane et al., 2011; David, 2012; 
Hemmrich et al., in press; Hobmayer et al., 2012; Plickert et al., 2012); nematocyte differentiation (David and Gierer, 1974; Campbell and Marcum, 
1980; Fujisawa et al., 1986; Grens et al., 1995; Lindgens et al., 2004; Miljkovic-Licina et al., 2004; Hwang et al., 2007; Galliot et al., 2009); nematocyst 
structure, content and discharge (Chapman and Tilney, 1959; Holstein and Tardent, 1984; Tardent, 1995; Beckmann and Ozbek, 2012; Plachetzki et al., 
2012; Rachamim and Sher, 2012); anatomy and differentiation of the nervous system (Schneider, 1890; Hadzi, 1909; McConnell, 1932; Burnett and 
Diehl, 1964; David and Gierer, 1974; Berking, 1979; Koizumi and Bode, 1986; Koizumi et al., 1992; Gauchat et al., 1998; Lindgens et al., 2004; Guder 
et al., 2006; Koizumi, 2007; Miljkovic-Licina et al., 2007; Galliot and Quiquand, 2011); neurophysiology (Loomis, 1955; Lenhoff and Bovaird, 1961; 
Passano and McCullough, 1962, 1963; Westfall et al., 1971; Kass-Simon and Pierobon, 2007; Pierobon, 2012); aging and stress response (Brien, 
1953; Martinez, 1998; Yoshida et al., 2006; Martinez and Bridge, 2012; Quinn, 2012); mesoglea structure and functions (Hess, 1957; Shostak et al., 
1965; Sarras et al., 1991,1994; Sarras and Deutzmann, 2001; Shimizu et al., 2002; Sarras, 2012);  symbiosis (Haffner, 1925; Muscatine and Lenhoff, 
1963; Bossert and Dunn, 1986; Kovacevic, 2012); innate immune system (Bibb and Campbell, 1973; Bosch, 1986; Miller et al., 2007; Altincicek and 
Vilcinskas, 2008; Bosch et al., 2009; Augustin and Bosch, 2011), peptide signaling and peptidomics (Lentz, 1965; Bodenmuller and Schaller, 1981; 
Grimmelikhuijzen, 1983; Schaller et al., 1989; Leitz et al., 1994; Hoffmeister, 1996; Takahashi et al., 1997; Grens et al., 1999; Fujisawa, 2008; Fujisawa 
and Hayakawa, 2012); transcription factors (Schummer et al., 1992; Galliot et al., 1995; Grens et al., 1996; Martinez et al., 1997; Gauchat et al., 1998; 
Broun et al., 1999; Smith et al., 1999; Technau and Bode, 1999; Gauchat et al., 2000; Gauchat et al., 2004; Lindgens et al., 2004; Miljkovic-Licina et al., 
2007; Bridge et al., 2010; Nakamura et al., 2011; Ambrosone et al., 2012; Klingel et al., 2012); cell death signaling (Cikala et al., 1999; Technau et al., 
2003; Chera et al., 2006; Chera et al., 2009; Lasi et al., 2010a, b; Chera et al., 2011; Reiter et al., 2012); growth factor signaling (Bosch et al., 1995; 
Hobmayer et al., 2000; Kaloulis et al., 2004; Philipp et al., 2005; Arvizu et al., 2006; Bosch, 2007; Bottger and Hassel, 2012; Galliot, 2012; Plickert et 
al., 2012); transgenesis (Wittlieb et al., 2006; Khalturin et al., 2007; Dana et al., 2012) and finally, genomic, transcriptomic and proteomic studies 
(Hwang et al., 2007; Chapman et al., 2010; Hemmrich et al., in press; Balasubramaniam et al., 2012; Steele, 2012). 
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simple and continuous shape, molecular markers as a series of 
gene expression patterns help visualize boundaries all along the 
body column of the adult Hydra polyp (Galliot, 2000; Hobmayer 
et al., 2000; Steele, 2002; Bottger and Hassel, 2012). Secondly, 
they argue that the formation of these boundaries can easily be 
monitored during budding, the asexual mode of reproduction pref-
erentially used by Hydra when maintained in favorable conditions, 
i.e. at room temperature with regular feeding (Hyman, 1928; Brien, 
1953; Otto and Campbell, 1977b, a). The budding process consists 
in the elongation of a new axis perpendicular to the parental one, 
it takes place in the lower part of the body column and produces a 
fully developed new Hydra ready to detach from the parent in few 
days. So far 17 molecular markers of the budding process have been 
identified and the analysis of their temporal and spatial regulation 
demonstrates the progressive regionalization of the growing bud, 
first to define the circular zone on the parent where the bud will 
form, then to define the bud spot from which the bud will emerge, 
and progressively the different domains in the growing bud that 
will get refined during bud maturation. Interestingly these markers 
point to highly conserved signaling pathways, Wnt, BMP, FGF and 
Notch. Pharmacological approaches have confirmed the importance 
of the FGFR/Notch signaling to definitely establish the parent/but 
boundary as when the FGFR or Notch patways are inhibited, buds 
develop well but never detach from the parent. Thus Hydra offers 
here a powerful and easily amenable experimental framework to 
investigate the intimate mechanisms of boundary formation.

Evolutionary studies in the genomic era
In 2010 the genome of Hydra magnipapillata was made avail-

able (Chapman et al., 2010) and in this issue Rob Steele asks 
three questions to clarify the content of these genomic sequences: 
What genes are present? What genes are absent? What genes 
are novel? (Steele, 2012). Basically all signaling pathways active 
in developing bilaterians can be found in the Hydra genome as 
anticipated from previous studies. In some cases the gene families 
even show an astonishing diversification. For example with respect 
to the Wnt signaling molecules, Hydra expresses 9 Wnt orthologs out 
of the 13 gene families found in bilaterians, when humans express 
12 of them, Anopheles 6, Drosophila 5 and C. elegans a single 
one (Lengfeld et al., 2009). This analysis (and others) prove that 
ecdysozoans have lost a significant number of gene families that 
are conserved from cnidarians to vertebrates. Rob Steele also tells 
us what is missing in Hydra; transcription factors as Emx or Evx 
although present in other hydrozoan species, pluripotency regula-
tors as Nanog and Klf4 that appear to be vertebrate innovations, 
and more surprisingly peptides previously characterized in Hydra 
either biochemically as Head Activator (Schaller & Bodenmueller, 
1981) or molecularly as Heady (Lohmann and Bosch, 2000), both 
involved in apical patterning and bud formation. The lack of genes 
coding for short peptides might reflect the incomplete assembly of 
the genome or alternative biosynthetic pathways. Finally, this review 
proposes to visit some interesting perspectives that genomics and 
transcriptomics, combined with transgenic strategies make possible.

Peptide signaling in Hydra
First evidences for a putative signaling function of peptides in 

Hydra biology came in the early 1960s when efforts were made to 
extract from Hydra tissues substances that show a graded distribu-
tion along the body axis and would be able to affect head pattern-

ing. In addition, one expected such substances to be produced by 
nerve cells, as Lentz had shown that neurosecretory granules can 
induce the formation of multiple heads (Lentz, 1965). Protease-
sensitive substances, whose activity was quantified by the number 
of tentacles regenerated per head, were indeed isolated and shown 
to localize in nerve membranes (Lesh and Burnett, 1964, 1966; 
Schaller and Gierer, 1973; Schaller, 1973). This Head Activator 
factor was shown to be active at very low concentration, thus ruling 
out possible unspecific contaminants as toxins from nematocysts 
(Muller and Spindler, 1971). Once purified in parallel from Hydra, 
sea anemone, human hypothalamus, rat hypothalamus, bovine 
intestine this 11mer peptide surprisingly showed an identical se-
quence highlighting for the first time the conservation of signaling 
molecules form cnidarians to mammals (Bodenmuller and Schaller, 
1981; Schaller and Bodenmuller, 1981). Head Activator was then 
used in a number of studies by different groups and it turned out 
that, depending on its concentration, it can promote cell proliferation 
and neuronal differentiation, enhancing thus head regeneration and 
budding (Schaller et al., 1989; Schaller et al., 1996). As discussed 
by Rob Steele the corresponding gene could not be identified in 
the genome sequences (Steele, 2012). In parallel efforts, peptides 
promoting foot differentiation were purified by Sabine Hoffmeister, 
confirmed this time by gene cloning (Hoffmeister, 1996; Grens et 
al., 1999; Hoffmeister-Ullerich, 2007).

But peptides are not only active as morphogens as several 
classes of peptides actually perform neurophysiological tasks, 
and for a while neurotransmission was even assumed to be 
predominantly peptidergic in cnidarians (Grimmelikhuijzen et al., 
2002; Pierobon, 2012). In the 1990s an ambitious screen for Hydra 
peptides was launched in Japan, identifying both neuropeptides 
and epitheliopeptides (Takahashi et al., 1997). In this issue, Toshi-
taka Fujisawa and Eisuke Hayakawa report about the signaling 
pathways activated by these peptides, most frequently through 
G-protein coupled receptors. They also discuss the highly variable 
evolutionary constraints applied on these peptide gene families, 
either conserved across eumetazoan phyla, or taxon-restricted, 
performing phylum- or even species-specific functions (Fujisawa 
and Hayakawa, 2012). Thus peptide analysis provides a tool to 
understand the evolution of Hydra-specific traits.

Hydra - a model system for neurophysiology
Hydra provides a model system for neurophysiological studies 
since the first description by Abraham Trembley of their active 
feeding behavior, immobilizing their food with their tentacles and 
ingesting it in a co-ordinated fashion in their mouth. 150 years 
later Jovan Hadzi described for the first time their neuroanatomy, 
sensory nerve cells connected to a loose neuronal network – nerve 
net- (Hadzi, 1909) and some years later Carl McConnell observed 
the development of the ectodermal nerve net when the animals dif-
ferentiate their head (McConnell, 1932). Subsequently the feeding 
response was the topic of much attention and the fact that animals 
can feed on live animals but not on dead ones suggested that 
they received from their preys some signals necessary to initiate 
the feeding response (Beutler, 1924). Helen Park observed that 
reduced glutathione (GSH) induces a prolonged mouth opening 
and William Loomis and Howard Lenhoff proposed that GSH be 
the signal regulating the feeding behavior (Loomis, 1955; Lenhoff 
and Bovaird, 1961). However GSH might not be the only active 
substance (Forrest, 1962). Nevertheless GSH was subsequently 
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used as an exogenous stimulant to investigate the mechanisms of 
the feeding response independently of the nematocyst discharge. 
In parallel neurophysiologists identified the pacemakers that control 
behaviors in Hydra and characterized polarized synapses (Passano 
and McCullough, 1963; Westfall et al., 1971). 

More recent pharmacological and molecular studies have demon-
strated the co-existence in cnidarian nervous systems of fast (ace-
tylcholine, glutamate, GABA, glycine) and slow (catecholamines, 
serotonin) neurotransmitters besides neuropeptides (Kass-Simon 
and Pierobon, 2007). In this issue, Paola Pierobon proposes a 
scenario whereby the multipolar GABAergic neurons in the apical 
region provide an integrative response that regulates the initiation 
and the termination of the feeding response (Pierobon, 2012).

The nematocyst, a sophisticated organelle with outstanding 
biomechanical properties

The nematocysts (or cnidocysts) are highly specialized venom-
containing organelles, basically thick wall capsules equipped with 
a tubule, which differentiate in the nematocytes (or cnidocytes) 
and play a role in predation, in defence and in locomotion. Indeed, 
their discharge is responsible for the immobilisation of the preys, 
but also for the attachment of the tentacles to the substrate during 
walking (Ewer, 1947; Tardent, 1995). Since their initial description 
(Weill, 1934a, b), the study of their biogenesis and their physiol-
ogy led to surprising discoveries as for example the unique speed 
of their discharge (Holstein and Tardent, 1984) or the negative 
regulation of their discharge by opsins (Plachetzki et al., 2012). 
In this issue Anna Beckmann and Suat Ozbek recapitulate what is 
currently known about their structural composition to provide these 
outstanding biomechanical properties. Interestingly they show that 
numerous constituants are actually found in the extra-cellular ma-
trix (ECM) as collagens, lectins, glysominoglycans, as confirmed 
by the proteome analysis (Balasubramanian et al., 2012). They 
propose that to store safely soluble toxins, cells chose to import 
intracellularly ECM components (Beckmann and Ozbek, 2012). 

The importance of the extra-cellular matrix (ECM) in devel-
opmental processes

The ECM in Hydra is a porous collagenous layer that maintains 
together the two epithelial cell layers, providing thus the shape but 
also the resistance and the flexibility of the animal (Sarras and 
Deutzmann, 2001; Shimizu et al., 2008). The questions raised by 
Michael Sarras in this issue are centered on two main issues: what 
are the biochemical properties that provide this unusual flexible 
and elastic structure, and what function(s) is playing the ECM on 
the amazing developmental potential of Hydra (Sarras, 2012). For 
the first question, he shows that the structure of the ECM is both 
conserved, sharing common structural elements with vertebrates as 
the laminin – collagen type IV polymerized network to provide the 
basal plasma membrane border of each epithelial layer (possibly 
interacting with epithelial cells through integrins), but also derived 
as the Hydra collagen type IV proteins, that show a quite distinct 
homotrimeric organization, much more flexible than the vertebrate 
collagen type IV. Similarly the major triple helical domain of the 
fibrillar collagen 1 has the same length in Hydra and in vertebrates 
but again the supramolecular organization is quite different with 
the Hydra Hcol-1 forming fine fibrils and the vertebrate collagen 1 
rather forming banded fibrils. 

Concerning the functions of the ECM, it was tested with multiple 

approaches (pharmacological, blocking antibodies, gene silencing 
via antisense RNA or insertion of exogenous ECM) in a variety 
of contexts, especially during reaggregation from dissociated 
tissues when the two epithelial cell layers come into contact in 
the absence of any ECM (Kishimoto et al., 1996; Murate et al., 
1997), but also during regeneration and budding (Aufschnaiter et 
al., 2011). It turned out that the ECM plays an essential role for 
all these processes that are blocked when the ECM cannot form 
properly (see in Sarras, 2012). At the cellular level the ECM is 
required for cell proliferation, cell migration, cell differentiation, 
cell transdifferentiation. Future steps will then be to understand 
the bidirectional signaling that regulates the interactions between 
the epithelial cell layers and the ECM.

The homeostatic and developmental functions of cell death
Cell death occurs in multiple contexts in Hydra, first recognized 

in animals exposed to colchicine (Campbell, 1976), then in animals 
of the thermo-sensitive strain sf-1 submitted to heat-shock (Mar-
cum et al., 1980), also in animals submitted to starvation (Bosch 
and David, 1984), to wounding (Fujisawa and David, 1984), to 
hetero-grafting (Bosch, 1986), or undergoing oogenesis (Honegger 
et al., 1989), spermatogenesis (Kuznetsov et al., 2001), massive 
autophagy (Chera et al., 2006) and finally in head-regenerating tips 
after mid-gastric bisection (Chera et al., 2009). In the meanwhile, 
parallel studies showed that the molecular cell death machinery is 
highly conserved from Hydra to bilaterians (Cikala et al., 1999; Lasi 
et al., 2010a, b). In addition, a number of cellular and biochemical 
tools are now available to characterize and quantify cell death in 
Hydra (Lasi et al., 2010b; Reiter et al., 2012). As discussed by 
Reiter et al. in this issue, Hydra offers a unique model system to 
dissect the multiple regulation and functions of cell death in an 
adult organism; that is, to maintain homeostasis in the absence of 
nutrients, to react to stress and injury, to insure stem cell renewal 
and germ cell production, to participate in immune responses 
(Reiter et al., 2012). 

Ecotoxicology and Environment

Hydra, a model system for aquatic ecotoxicological studies
Hydra is not only a model system for cell and developmental biol-
ogy, but thanks to multiple endpoints that can be monitored (i.e. 
the morphology, the attachment, the feeding response, the growth 
rate, the regenerative response), Hydra is also a highly suitable 
model system for aquatic ecotoxicological studies. Hydra are 
highly sensitive to heavy metals (cadmium, zinc, copper, uranium, 
magnesium), possibly because they lack the metal-binding protein 
metallothionein. However Brian Quinn, François Gagné and Chris-
tian Blaise tell us that very little is known about the mechanisms 
that underlie this toxicity (Quinn et al., 2012). One possibility they 
discuss is to perform comparative analyses between Hydra species 
that show highly different levels of thermo tolerance as there is a 
cross protection between thermo tolerance and metal tolerance. 
Hydra oligactis that displays a reduced stability of hsp70 possibly 
explaining their lower thermo tolerance (Brennecke et al., 1998), 
would provide a well-suited framework to test tolerance to met-
als. But Hydra are also highly sensitive to endocrine disrupting 
compounds as bisphenol A, as evidenced by the rapid alterations 
of the tentacle morphology or the sexual reproduction. Hydra are 
good candidates to be tested to organophosphorus pesticides or 
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to drugs frequently present in municipal effluents as carbamaze-
pine by looking at the cellular stress responses, at the oxidative 
stress. By contrast they exhibit a rather low sensitivity to organic 
toxicants (polychlorinated biphenyls, 4-chlorophenol, lindane, mi-
rex,..). With the exception of organic toxicants, Hydra appears as 
one of the most sensitive species to toxicants when compared to 
other invertebrate test organisms, especially for sub-lethal effects. 
Moreover the use of symbiotic versus aposymbiotic animals can 
provide useful conditions for investigating the mechanisms of a 
detected toxicity.

Value of the Hydra model system for studying endosymbiosis
Unicellular dinoflagellate algae frequently inhabit aquatic inverte-

brates establishing with their host a mutualistic partnership named 
symbiosis. Among cnidarians the importance of endosymbiosis is 
well-established in reef-building corals (Weis and Allemand, 2009). 
However, endosymbiosis is not restricted to stony corals in cnidar-
ians, it is also present in some sea anemones, jellyfish and Hydra 
species (see in Venn et al., 2008). Out of the four Hydra species 
(Kawaida et al., 2010; Martinez et al., 2010), only Hydra viridissima 
shows endosymbiosis with photosynthetic Chlorella algae living in 
the endodermal epithelial cells, and transmitted to the oocyte when 
the animals undergo sexual differentiation (Muscatine and Lenhoff, 
1963; Rahat and Reich, 1985). More than 100 years ago Whitney 
found a way to eliminate these algae without compromising the 
survival of their host, which then become aposymbiotic (Whitney, 
1907). As Hydra can be easily mass cultured in the laboratory, this 
procedure opened the way to study the complex interactions be-
tween the host and the symbionts and design strategies to identify 
the signals that allow the symbionts to invade the host and avoid 
its immunological response (Muscatine and Lenhoff, 1965). In this 
issue Goran Kovacevic recapitulates the current knowledge about 
the cellular and metabolic processes linked to endosymbiosis in 
Hydra and discusses the impact of gene flow between symbionts 
and Hydra (Kovacevic, 2012). 

The chemical arsenal and the chemical landscape of Hydra 
In this issue Tamar Rachamim and Daniel Sher discuss the 

impact of Hydra on its environment, first considering the venom 
they produce in their nematocysts, but also taking into account all 
the bioactive compounds they release (Rachamim and Sher, 2012). 
The venom is supposed to be a complex mix up of toxic as well as 
non-toxic molecules that all together are responsible for the toxic-
ity of a given venom. In case of Hydra the knowledge concerning 
the composition of the venom is currently quite vague and partial, 
although some components were characterized as some cytolytic 
actinoporins, some ShK domain proteins that block the K+ chan-
nels or the neurotoxic phospholipase A2 protein. All these toxic 
proteins are supposed to have diverged from non-toxic proteins, 
representing thus convergent evolutionary events between different 
venomous species. Moreover the composition  of the venom is 
likely different between the different types of nematocysts, either 
involved in the feeding response (stenoteles, desmonemes), or in 
defence (holotrichous isorhizae) or in locomotion (atrichous isorhi-
zae) (Ewer, 1947). Therefore further studies should be performed 
on purified homogenous populations of nematocysts. 

As mentioned above, the chemical arsenal in Hydra extends 
outside nematocytes with bioactive compounds showing tissue 
or cell-type restricted expression, as the antimicrobial peptide 

Periculin 1A expressed exclusively in the female germline (Fraune 
et al., 2010), the paralytic and pore-forming Hydralysin genes 
expressed in the digestive cells (Sher et al., 2008), the MAC-PF 
genes encoding pore-forming domain proteins expressed in gland 
cells (Miller et al., 2007) or in the peduncle region (Amimoto et al., 
2006). Tamar Rachamim and Daniel Sher proposes that together 
with the discharged venom, the overlap of these domains of expres-
sion create “chemical landscapes” along the Hydra body that can 
be sensed by the neighboring polyps when Hydra live in groups, 
or by the preys, or by any organism present in the surroundings. 
Hence Hydra might provide an experimental model to understand 
how bioactive compounds affect the aquatic biosystem.

Pedagogy

Hydra - a model system for teaching science
The last review of this issue focuses on the pedagogical value 

of the Hydra model system, initially demonstrated by Abraham 
Trembley who performed his experimental research with the two 
young children of Count Bentick. This review takes advantage of 
the unique expertise of Patricia Bossert in this matter, who, as a 
high school teacher and pedagogical consultant, continuously used 
the Hydra model system to teach biology in high school classes 
of New York State over the past 30 years (Bossert and Galliot, 
2012). Together with dedicated students she developed a panel of 
tools and strategies to investigate a variety of biological questions 
that touch ecology, selection in evolution, photobiology, develop-
mental biology and molecular biology. Each of the teaching units 
proposed in this article is designed to provide the basic protocols 
of precise experiments with expected results but also to challenge 
the students to go further and design their own experiments. Thus, 
we expect that thanks to the Hydra model system, teachers and 
young students will develop their curiosity, their creativity and their 
rationale thinking. 

Perspectives
In the field of cell biology, some key questions remain unan-

swered. One of them is the degree of cell plasticity that can be 
observed in Hydra: these animals regenerate in the absence of 
cell proliferation or in the total absence of nervous system. Does 
it mean that cell proliferation and nerve cells are not used when 
the animals are fully equipped or does it instead mean that the 
animals reprogram when one of their attributes is missing? The 
second proposition would permit reconciliation of sets of data that 
at the moment appear contradictory, as for example the role of 
substances produced by the nerve cells that were shown to pro-
mote head formation and participate in morphogenetic processes. 
A better understanding of the limits and regulation of this plasticity 
is a major task for the coming years.

Similarly in the field of developmental biology regeneration is 
often considered as a simple reinterpretation or translation of the 
homeostatic parameters with no specific regenerative program. 
However, one can also consider that the reactivation step in the 
developmental program is in itself specific to regeneration and 
not simply derived from the homeostatic condition that precedes 
injury. A series of data actually suggest that this reactivation step 
is drastically constrained by the homeostatic context as evidenced 
by the studies that show significant differences between the early 
stages of head regeneration after decapitation (which is used as 
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the reference situation in numerous studies) or after mid-gastric 
bisection. Again Hydra provides a highly suited system to study 
the impact of the homeostatic context on the way to launch a re-
generative program, a major question to solve before establishing 
regenerative strategies.

The aim of this issue was primarily to demonstrate to scientists 
and teachers at any stage of their career that the Hydra model 
system is fruitful, promising and potent. Potent because this model 
combines the simplicity of its anatomy to a sound basis of knowl-
edge of the developmental and cellular processes; fruitful because 
the biological questions that can be addressed with the Hydra 
model system are multiple and become more and more diverse 
with time, and finally promising because this system now provides 
functional tools that can be associated to genomic, transcriptomic 
and proteomic approaches. Gene knockdown through RNA inter-
ference was first established by electroporation, a rather harmful 
procedure (Lohmann and Bosch, 2000). Later feeding animals 
with dsRNAs proved to be a relatively easy, incremental and 
highly efficient procedure when controled at the RNA and protein 
levels, producing a variety of well characterized phenotypes (Ch-
era et al., 2006, Miljkovic-Licina et al., 2007, Chera et al., 2009; 
Chera et al., 2011). However the stability of its efficiency in the 
various Hydra strains/species seems to be affected by infectious 
agents that compete for the components of the RNAi machinery 
(BG, unpublished). Therefore additional efforts need to be done 
to characterize the agents interfering with the RNAi machinery in 
Hydra. To finish I would say that Hydra are simply esthetic and 
this is a great pleasure to see them everyday. 
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