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ABSTRACT  In systems undergoing chemical reaction and diffusion, a remarkable variety of

spatially structured patterns, stationary or moving, local or global, can arise, many of them

reminiscent of forms and phenomena seen in living systems. Chemical systems offer the

advantage that one can often control the parameters that determine the patterns formed and can

thereby probe fundamental issues about pattern formation, with possible insights into biologi-

cally relevant phenomena. We present experimental examples and discuss several mechanisms

by which such spatiotemporal structure may arise, classifying the mechanisms according to the

type of instability that results in pattern formation. In some systems, the pattern that emerges

depends not only on the chemical and physical parameters but also on the initial state of the

system. Interactions between instabilities can result in particularly complex patterns.
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Introduction

Biology as a science probably began with efforts to system-
atize and classify the many varieties of plants and animals. The
main criteria for such early taxonomic endeavors involved shapes
or patterns. Clearly, biology in general, and developmental biol-
ogy in particular, are closely linked to pattern formation. Recent
progress in genomics points the way toward new approaches to
systematization and taxonomy. Biological patterns are clearly
dependent on the activity of genes. However, the path from genes
to final patterns is long, tortuous and in most, perhaps all, cases,
unknown, so that the conclusion that genes are the sole determi-
nants of such processes may be premature. It seems reasonable
to suggest that gene products generate patterns as components
of self-organizing chemical networks, and the notion that pre-
existing patterns act to determine gene activation or expression
is not outside the realm of possibility (Fields, 1996; Fields et al.,
1997).

The term “patterns” in biology is perhaps too broad. One can
consider external structures, for example, pigment spots on the
skins of animals (Kondo and Asai, 1995), or, on the other hand,
internal ones, like calcium waves inside living cells (Lechleiter et
al., 1998). The mechanisms of pattern formation in biology are
also extremely diverse. Structures like micelles or membranes
can arise via equilibrium self-organization, while others, like the
living cell itself, are stable only far from equilibrium and hence
require an input of energy. Such structures can emerge from
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mechanical-chemical interactions or via growth starting from a
newborn organism (Murray, 2003). One mechanism, or, more
accurately, group of mechanisms, proposed by Alan Turing in a
work entitled “The Chemical Basis of Morphogenesis” (Turing,
1952) is diffusive instability, which can be realized in homoge-
neous reaction-diffusion systems. It is this chemical-physical
approach to biological pattern formation that we focus on here.

Of course, representing biological systems, which are typically
quite heterogeneous, by a homogeneous reaction-diffusion me-
dium is a rather crude approximation. Nevertheless, such an
approach can give insights into real processes. Diffusive instabili-
ties can provide the initial impetus for other mechanisms of
pattern formation that dominate the later stages of patterning. In
some cases, it appears that diffusive instabilities are the actual
sources of pattern formation in biological systems.

As examples, we point first to several cases of propagating
waves: Ca2+ waves within cells (Lechleiter et al., 1998) and
between cells, (Harris-White et al., 1998), and NADH waves in
living neutrophils, (Kindzelskii and Petty, 2002; Petty and
Kindzelskii, 2001). A classic, but still extremely important ex-
ample of wave propagation is the action potential in neurons
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(Hodgkin and Huxley, 1952a; Hodgkin and Huxley, 1952b). The
development of pigment spots on the skins of animals or fish has
been suggested to occur via a Turing instability (Kondo, 2002;
Kondo and Asai, 1995; Liu et al., 2006). Although the actual
molecules and detailed mechanism involved in pigment pattern
formation are not yet known, this “Turing mechanism” is certainly
more plausible than the mechanism suggested by Rudyard Kipling
for development of the spots on a leopard (Kipling, 1996). Very
recently, a comprehensive Turing mechanism for hair follicle
spacing, including the WNT signaling pathway, was suggested
(Sick et al., 2006). The Turing mechanism, which involves so-
called long range inhibition and short range activation (Gordon
and Beloussov, 2006), can be applied even at the level of
describing the behavior of a colony of ants (Theraulaz et al.,
2002).

The main goal of this review is to present mechanisms of
pattern formation in homogeneous reaction-diffusion chemical
systems under controllable conditions, including concentrations,
external signals, size of the system, temperature, and even
diffusion coefficients. The advantage of chemical systems over
biological ones in this regard is that we can manipulate almost all
the parameters that affect patterning. In addition to presenting
examples of reaction-diffusion patterns and an overview of mecha-
nisms, we highlight examples in which the pattern obtained
depends on the initial conditions in order to emphasize that
physical-chemical principles alone may be insufficient to predict
the spatiotemporal behavior of a complex living system. We take
as our prototype system the Belousov-Zhabotinsky (BZ) oscillat-

ing chemical reaction incorporated into nano-droplets of water in
a reverse aerosol OT (AOT) microemulsion. Such a complex
system can generate different patterns not only on varying the
physical environment (droplet size or concentration of droplets)
but even under the same conditions but starting from a slightly
different initial state.

Classification

Taking as our starting point the initially uniform, unpatterned
steady state, we can identify two types of instabilities that lead to
pattern formation. For one class, an infinitesimal inhomogeneous
perturbation can result in patterning. For the second, a finite
perturbation, whose amplitude exceeds some threshold, is re-
quired to initiate pattern formation. The first category of instabili-
ties includes supercritical wave instability and Turing instability,
as well as Hopf instability (Cross and Hohenberg, 1993). These
instabilities lead to global patterns that occupy the entire medium.
The second kind consists of subcritical instabilities (wave, Turing,
and Hopf), as well as excitability, the phenomenon whereby small
perturbations of the initial steady state quickly decay but
superthreshold disturbances first grow and cause a large excur-
sion before the system returns to the initial (stable) state. Systems
with two or more stable steady states can also belong to this
second class. In some cases, instabilities of the second class can
lead to localized patterns, which occupy only a small portion of the
medium, but in other cases they yield global patterns like those
produced by instabilities of the first type.

The classification of spatiotemporal instabilities is based on
consideration of how a small, inhomogeneous perturbation ap-
plied to the homogeneous steady state evolves. The perturbation
is assumed to be periodic in space (one can consider it as a
Fourier component of a perturbation with a more general shape)
and to grow or decay exponentially in time. We can then write it
in the form ε exp(λt + ikx), where ε is the amplitude, k is the
wavenumber (inversely proportional to the wavelength), x is the
spatial coordinate, i = (-1)1/2, and t is time. The sign of λ deter-
mines whether an infinitesimal perturbation with a particular k
grows, in which case the steady state is unstable, or shrinks,
which would correspond to a stable steady state.

We can obtain λ from the reaction-diffusion equations, the set
of partial differential equations that describe the chemical kinetics
and the diffusion in the system, by linear stability analysis (Nicolis
and Prigogine, 1977). The process consists of writing each

Fig. 1. Sequence of snapshots of target patterns in the aqueous Belousov-Zhabotinsky (BZ) reaction. Patterns emerge from an initially
homogeneous red solution. Catalyst/indicator is ferroin. Red areas are more reduced; blue areas are more oxidized.

Fig. 2. Spiral patterns. (A) BZ reaction. (B) Aggregating Dictyostelium
discoideum during aggregation of single cells in the process of spore
formation induced by starvation.
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concentration variable cj as

cj (x,t)   =   cj0 +  εj exp(λt + ikx) (1)

where cj0 is the space- and time-independent steady state con-
centration of species j, and εj is the (very small) amplitude of the
perturbation in that species. We substitute eq. (1) for the concen-
trations in the reaction-diffusion equations and drop all terms of
second order or higher in the εj, because the product of two
infinitesimal quantities is negligibly small. We are left with a set of
N homogeneous linear equations in N unknowns, where N is the
number of species. These equations have a nontrivial (concentra-
tions not all equal to zero) solution only for certain values of λ, the
eigenvalues of the matrix of coefficients of the linear equations.

The dependence of λ on k, called the dispersion relation, tells
us much about how the system can behave. If λ is negative for all
k, then any small perturbation will decay, and the homogeneous
steady state is stable. If λ is real and has a positive maximum at
some kmax > 0, then perturbations with wavelengths at or near 2π/
kmax tend to grow, and we have Turing instability, which can lead
to patterns that are stationary in time and periodic in space
(Castets et al., 1990; Turing, 1952; Vanag and Epstein, 2001b).
If λ is complex and Re(λ) is positive at some k > 0 but negative at
k = 0, then we have wave instability, which can generate various
wave patterns such as standing or traveling waves, packet or
accelerating waves (Turing, 1952;Vanag and Epstein,
2001b;Vanag and Epstein, 2002). If Re(λ) is positive and Im(λ) ≠
0 at k = 0, then we have Hopf instability, which leads to uniform,
bulk oscillations (Field and Burger, 1985; Hopf, 1942).

It is possible for a system to possess more than one of these
instabilities. Combinations of instabilities can produce striking
patterns like the segmented spiral waves seen in experiments
(Vanag and Epstein, 2003b) or the “pinwheels” found in computer
simulations (Yang and Epstein, 2003b).

Experimental systems

The most thoroughly characterized and most versatile chemi-
cal system that exhibits pattern formation is the BZ reaction, the

metal-ion catalyzed oxidation of malonic acid or a similar organic
species by bromate in a highly acidic, usually sulfuric acid,
aqueous solution (Belousov, 1959; Zhabotinsky, 1964). At appro-
priate concentrations, the stirred reaction exhibits nearly periodic
temporal oscillations in redox potential and in the concentration of
many species, including bromide ion, that can persist for an hour
or more even in a closed system like a beaker. Unstirred, e.g., in
a petri dish, the system produces traveling concentration waves,
typically concentric circles (“target patterns”) or spirals that move
out from a central “pacemaker” (Winfree, 1972; Zaikin and
Zhabotinsky, 1970). These waves travel at constant velocity and,
if two waves collide, they annihilate one another, often leaving
intricate patterns. Fig. 1 shows an example of target patterns in an
aqueous BZ system, while Fig. 2 compares spiral BZ patterns with
those seen in an aggregating slime mold, Dictyostelium
discoideum.

Although many systems exhibit bulk oscillations in a continu-
ously fed stirred tank reactor (Sagues and Epstein, 2003), i.e., an
open system, relatively few show sustained oscillation in a closed
system or display pattern formation. In addition to the aqueous BZ
reaction, three chemical systems have been found to exhibit a rich
variety of patterns. These are the chlorite-iodide-malonic acid
(CDIMA) reaction, (De Kepper et al., 1982; Lengyel et al., 1990),
the BZ-AOT system (Vanag and Epstein, 2001a; Vanag and
Epstein, 2001b; Vanag and Epstein, 2003b) and the ferrocyanide-
iodide-sulfite (FIS) reaction (Edblom et al., 1986; Lee et al., 1993;
Lee et al., 1994).

The most prolific of these, in which nearly all known patterns
have been found, is the BZ-AOT system, i.e., the Belousov-
Zhabotinsky reaction in a water-in-oil microemulsion. The latter
consists of nanometer diameter water droplets dispersed in the oil
phase (octane, for instance). This system has several features
analogous to living cells. All the chemical reactions, which involve
the polar, hydrophilic reactants, occur inside the water droplets,
but two hydrophobic intermediates, Br2 and BrO2

•, can diffuse into
and through the oil phase. They play the role of signaling mol-
ecules that transmit information from one droplet to another. The

Fig. 3. Turing patterns in

the BZ-AOT system. Ini-
tial concentrations (in M)
in the aqueous phase and
parameters ω and ϕd of the
AOT microemulsion: (A-F)

[MA] = 0.25; [H2SO4] =
(A,B) 0.2, (C,D) 0.175, (E)
0.14, (F) 0.142; [NaBrO3] =
(A,B) 0.18, (C,D) 0.15, (E)
0.14, (F) 0.142; [ferroin] =
(A-F) 4.2 × 10-3,
[Ru(bpy)3

2+] = (e) 0.25 ×
10-3 and 0 in all other cases,
Ru(bpy)3

2+ was added to
make the BZ-AOT system
photosensitive; ω = (A,B)
15, (C,D,F) 18.3, (E) 18; ϕd
= (A,B) 0.355, (C-F) 0.48;

frame size, mm × mm, (A,B,F) 5 × 3.75; (C) 7.6 × 5.7; (D,E) 2.61 × 1.96. (A) 10 min after initiation; (B) 50 min after initiation; (D) is an enlargement
of the white rectangle in frame (C). White corresponds to maximum value of catalyst Z (ferriin) concentration, black to minimum.
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Fig. 5. Stationary Turing patterns in the CDIMA reaction developed after

illumination through a mask. The ratio between the characteristic wave-
lengths of the mask and the native Turing patterns are equal to 2, 3 and 4,
respectively for rows (A,B,C). The numbers above the columns show the time
(in min) after cessation of illumination. Frame size = 5 × 5 mm2. From Yang et
al., (2006a).

characteristic time of this “information transfer” over a
distance l is determined by the diffusion coefficient D of
small molecules in octane (≅ 2 × 10-5 cm2/s) as l 2/D.
Droplets can also collide, merge for a while, and then
fission. This process also leads to mass or information
exchange, but the rate of this process is significantly
smaller, with characteristic time l 2/Dd, where Dd is the
diffusion coefficient of a droplet as a whole, which is
dependent on the radius of the droplet through the Stokes-
Einstein equation and is typically in the range 10-6 – 10-7

cm2/s for this system.
To illustrate the variety of patterns in reaction-diffusion

systems, we show here several examples, most of them
found in the BZ-AOT system.

Turing patterns

Diffusive instabilities usually require a special relation-
ship between diffusion coefficients. Ordinarily, for Turing
instability the diffusion coefficient of the inhibitor, Dinh,
should be significantly larger than that of the activator, Dact.
This theoretical relation applies, however, only in the
absence of cross-diffusion (Vanag and Epstein, 2009),  i.e.
the diffusion of each species must depend only on its own
concentration gradient and not on gradients of other spe-
cies, and it is clearly an oversimplification in systems with
more than two variables, which include essentially all
biological systems. In most real systems there are many
variables, and it is often difficult or impossible to find a

Fig. 4. Chemical memory. (A,B) stationary patterns. (C) Stationary spots
and localized moving waves. Right section of the reactor is not illumi-
nated, and stationary Turing patterns develop. After the image of the
mask emerges, the mask is removed and the left section of the reactor
is uniformly illuminated with intensity I = I0  /5, I0 = 28 mW/cm2, while the
right section of the reactor is not illuminated. (D) Space-time plot. Cross
section is made along the lower oval of the mask image. Size = 10.8 mm
× 18 min. The thickness h of the image lines is 0.25 mm. [H2SO4]0 = 0.3
M, [NaBrO3]0 = 0.25 M, [MA]0 = 0.1 M, [Ru(bpy)3]0 = 4 mM, ω = 10, ϕd
= 0.45, Figures in left column are adapted from (Kaminaga et al., 2006)
while figures in right column are unpublished results of Kaminaga, Vanag,
and Epstein.

model that adequately explains the phenomenon of interest and
possesses only two variables. Nevertheless, the insight from
theory that a system that exhibits Turing-type behavior should
have at least one fast-diffusing species that serves as an inhibitor,
i.e., prevents or hinders autocatalysis, remains valid. In the BZ-
AOT system, we can identify such a species in Br2. Bromine
diffuses rapidly in the oil phase and inhibits autocatalysis through
its facile conversion into Br-, which is the actual inhibitor in the BZ
reaction.

Many different Turing patterns have been found in the BZ-AOT
system; several are shown in Fig. 3. All the patterns in Fig. 3 are
stationary, even those in Fig. 3F that resemble the concentric ring
wave patterns in Fig. 1. In Fig. 3 we see spots (B), stripes (F), and
labyrinthine (D) patterns. Mixtures of stripes and spots are also
possible (E).

Turing patterns do not occur in the aqueous BZ system,
because the condition of a fast-diffusing inhibitor cannot be
realized, since all the (small molecule) species in this system have
nearly equal diffusion coefficients. Introduction of the
microemulsion in the BZ-AOT system makes it possible to control
or regulate the rate of diffusion of Br2 relative to that of the
aqueous species, because the size of the droplets, and hence
their diffusion coefficient, depends in a simple fashion on the
[H2O]/[AOT] ratio, while the spacing between droplets depends
upon [octane]/[H2O].

If the metal catalyst used is the photosensitive ruthenium tris-
bipyridyl [Ru(bpy)3

2+], the light intensity can be employed as a
further controllable parameter. In general, light of wavelength
near 450 nm acts as a suppressor and can completely inhibit the
BZ reaction, as well as pattern formation, due to photogeneration
of bromide (Krug et al., 1990). It is possible to tune the light
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intensity in such a way that the BZ-AOT system is close to the
onset of Turing instability. Under these conditions the BZ-AOT
system displays hysteresis and bistability between a homoge-
neous steady state and stationary Turing patterns (Kaminaga et
al., 2006).

In the dark, Turing patterns form spontaneously in this system.
If the light intensity, I, is slowly increased, the patterns initially
change only slightly, but at a critical intensity, Isc, they suddenly
vanish, and the homogeneous steady state (SS) is seen. If we
then slowly decrease I, the Turing patterns spontaneously re-
emerge at a lower intensity, Ic. For Ic < I < Isc, the system is
bistable, a characteristic feature of subcritical Turing instability. In
this bistable range of I, localized patterns generated by a local
perturbation can be stable, and Turing patterns cannot emerge
spontaneously elsewhere in the medium, since the SS is also
stable. In Fig. 4 A,B we show how the system can “memorize” the
image of a mask. This example demonstrates an important
general phenomenon, the ability of a dissipative nonlinear system
to display different patterns depending upon its initial conditions.

At slightly different conditions, this system generates localized
waves in addition to stationary localized spots. A snapshot of the
mask memorized by the system is shown in Fig. 4C. The upper
part of the image consists of stationary spots or short line
segments, while the bottom part of the oval face is represented
now by localized waves that can be clearly seen in Fig. 4D, a
space-time plot made along the oval of the face image. The
central point in Fig. 4D, where the waves collide and annihilate,
corresponds to the lowest point of the face in Fig. 4C. Here we see
that a single system can exhibit three qualitatively different
behaviors: silent area (stationary homogeneous steady state),
localized stationary spots and localized traveling waves.

This multifaceted behavior is not unique to the BZ-AOT sys-
tem. The CDIMA system, in which Turing patterns were first
discovered (Castets et al., 1990), is also capable of producing
different Turing patterns under the same chemical and physical
conditions. Fig. 5 shows a result analogous to the above experi-
ment, where a spatially extended CDIMA reaction is briefly
illuminated through different masks (left column), the masks and
the light source are removed, and Turing patterns then develop in
the dark (Yang et al., 2006a). In the rightmost column of Fig. 5 we
see quite different stable complex Turing patterns belonging to

the class of superlattices, patterns that have at least two different
characteristic wavelengths. It is important to note that such
patterns can arise only under conditions for which a thin layer of
the CDIMA reactants produces labyrinthine Turing patterns.

Bistability between different types of Turing patterns was also
found in computer simulations with a photosensitive version of the
Lengyel-Epstein model of the CDIMA reaction (Lengyel and
Epstein, 1991; Vanag and Epstein, 2003c)

∂u/∂t = a – u – 4uv/(1 + u 2) – w(x,t ) + Δu (2)

∂v/∂t = σb[u - uv/(1 + u 2) + w(x,t )] + σdΔv (3)

In Fig. 6 we observe two different Turing patterns, stripes and
black spots, which can coexist at the same parameters starting
from different initial conditions.

Another important feature of patterns in dissipative, e.g.,
reacting systems, which has received insufficient attention in the
literature, is that the morphology of a pattern may not provide
much information about the mechanism that produces it. To
illustrate this point, we show in Fig. 7 three labyrinthine stationary
patterns; (A) and (C) are from experiments, while (B) was gener-
ated by computer simulation. Pattern (B) is not completely station-
ary, since the growth of the “tentacles” has not yet finished, but the
central part of the labyrinth is no longer changing with the growth
at the periphery, and this labyrinthine pattern will eventually
become stationary. The patterns in Figs. 7(A) and (B) developed
in bistable systems that do not have a Turing instability, (A) in the
FIS reaction (Lee et al., 1993) and (B) in the FitzHugh-Nagumo
model (Vanag and Epstein, 2007), while pattern (C) is a Turing
pattern in the BZ-AOT system (Vanag and Epstein, 2001b).
Another example of a computationally obtained labyrinthine pat-
tern can be found in Fig. 6 (bottom row, second column). Both
theory and experiment confirm that labyrinthine patterns can be
obtained either in a bistable system without Turing instability or in
a monostable system with Turing instability.

Our analysis of patterns in reaction-diffusion systems sug-
gests that the shape and dynamical behavior of almost all patterns
can be explained by at least two different mechanisms. This
situation resembles that found in living creatures, where two

Fig. 6. Simulation of the photosensitive LE model (2), (3). Bistability
between stripes and black spots at I = 4 and 4.5. From Vanag and Epstein
(2003c).

Fig. 7. Labyrinthine stationary patterns. (A) in the Fe(CN)6
4- - IO3

- -
SO3

2- system in a thin layer of polyacrylamide gel in a continuously fed
unstirred reactor; light stripes correspond to low pH, black stripes to high
pH [from (Lee et al., 1993)], (B) in a bistable FitzHugh-Nagumo model (u
–map): ∂ u/∂τ = –u(u – a)(u – 1) – b( v – u) + Du∇2u; ∂ v/∂τ = (– v + u)/ε + Dv∇
2v. White corresponds to u = 1, black to u = 0. Parameters Du =0.01, a =
0.4, b = 0.2, 1/Dv = ε = 0.1. Total size = 30 × 30. Initial circular perturbation
with radius R0 = 10 shrinks and then slowly transforms to localized
labyrinthine pattern [from (Vanag and Epstein, 2007)]. (C) in the BZ-AOT
system. ω = 15, φd = 0.35. Gray levels quantify [ferroin], with white
corresponding to minimum and black to maximum. Concentrations (M):
[H2SO4]0 = 0.2, [NaBrO3]0 = 0.17, [MA]0 = 0.3. From Vanag and Epstein
(2001b).
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organisms with similar appearance may have very different ge-
nomes, while two superficially different individuals may possess
closely related genomes.

Wave instability

Next, we consider patterns that emerge due to wave instability,
the second major diffusive instability. The first experimental
evidence of wave instability in reaction-diffusion systems ap-
peared only rather recently (Vanag and Epstein, 2001a; Vanag

and Epstein, 2001b; Vanag and Epstein, 2002). Wave instability
can manifest itself as standing waves (Fig. 8), as packet waves
(Fig. 9), or as traveling waves with the special property that they
collide without annihilation. This feature of traveling phase waves
associated with a wave instability is not unique, however. Trigger
waves, which arise via excitability, and which typically have a
much larger amplitude, can also collide without annihilation, if the
system is close to a subcritical Hopf bifurcation (Kosek and
Marek, 1995). For trigger waves, non-annihilation is rare event,
while for traveling phase waves supported by a wave instability,
it is the rule. Although it is sometimes difficult to distinguish trigger
and phase waves, the latter cannot occur in an excitable medium
since they require periodic oscillations at each spatial point;
phase waves arise from different phases of oscillation at different
spatial points.

In the case of wave instability, each spatial point of the system
oscillates with period Tw. Such a system typically gives rise to
phase waves. Unlike phase waves in a system with a Hopf
bifurcation, where the wavelength, which is determined by the
initial concentration gradient, can take any value, here there is a
characteristic wave length Lw given by the dispersion relation λ(k)
as Lw = 2π/kmax, where kmax is the wavenumber at which Re(λ)
attains its positive maximum. The velocity of the phase waves is
vp = Lw/Tw where the period of oscillation Tw is also determined
from the dispersion curve as Tw = 2π/Im(λw), and λw is the
eigenvalue of the linear stability matrix at kmax.

If we have a wave packet, like the ones shown in Fig. 9A, then
the phase waves can propagate only within each packet. The
packet itself can also propagate and spread with time. The
velocity of the wave packet, the so-called group velocity, is given
by vg = dIm(λ)/dk at k = kmax. This group velocity can be positive
or negative. The latter case, in which individual waves and the
packet as a whole move in opposite directions, gives rise to
unusual phenomena, such as the antispirals found in experiments
on the BZ-AOT system (Vanag and Epstein, 2001a). These
waves propagate inwardly, toward the spiral center, while in
normal spirals, which usually consist of trigger waves in an
excitable medium, the waves propagate out from the center.

Fig. 9 (Left). Packet waves. (A) [H2O]/[AOT] = 15. (B,C) [H2O]/[AOT] = 16.4, (D) [H2O]/[AOT] =  15.2. Size (mm x mm) (A)  2.5 x 2.2, (B,C) 1.88 x
1.4, (D) 3.76 x 2.81. Turbulent wave pattern in (C) evolves from more regular pattern in (B). White corresponds to maximum catalyst (ferriin)
concentration, black to minimum. Arrows mark direction of wave movement. From Vanag and Epstein (2002).

Fig. 10 (Right). Checkerboard-like pigment pattern on the shell of the small sea snail Bankivia fasciata. From Meinhardt (2004).

Fig. 8. Standing waves. (A) Snapshot, with spatial Fourier transform
shown as inset. (B) Superposition of two snapshots taken half an
oscillation period apart. (C) Space-time plot. From Kaminaga et al.
(2005b).
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A possible biological example of wave instability can be found
in patterns on the mollusk shell (Meinhardt, 2004). A mollusk can
enlarge its shell only at the growing edge by accretion of new
material. If this process occurs via one-dimensional (i.e., along
the edge) standing waves, and if the morphology of the shell
manifests itself as a space-time plot of the events that take place
at the growing edge, then the patterns should look like a check-
erboard (see Fig. 8C). Such mollusk shells are indeed found in
nature (see Fig. 10). Whether or not they arise as a result of wave
instability is a matter of speculation at this stage.

Patterns involving interacting instabilities

found thus far only in the BZ-AOT system, probably arise from
interaction between excitability and Turing instability (Vanag and
Epstein, 2003a; Vanag and Epstein, 2003b). We can imagine at
least two possible realizations of such an interaction. In one case,
the system is bistable, and one steady state, SSI, is excitable
while the other steady state, SSII, is Turing unstable. Here,
excitability produces a trigger wave that switches the system into
SSII, so the system can be in SSII only at those points that belong
to a wave or pulse, i.e., locally. If such an interpretation applies to
dash-waves, then dash-waves are a 1D moving Turing pattern. In
the second case, the system is monostable with the single steady
state possessing both excitability and a subcritical Turing or wave
instability. Such a combination occurs in a modified FitzHugh-
Nagumo model (Bode et al., 2002; Schenk et al., 1997), which can
produce not only dash-waves (Vanag and Epstein, unpublished),
but jumping waves (Yang et al., 2006b) as well, in which a pulse
periodically disappears from its original position and then re-
emerges at a fixed distance. Such jumping waves have recently
been found experimentally.

The BZ-AOT system catalyzed by bathoferroin exhibits a
remarkable example of bimodal behavior, in which two qualita-
tively different patterns, segmented waves and jumping waves,
can coexist in the same system (Fig. 13A). This system is quite
sensitive to small changes in parameters and, as key concentra-
tions evolve over time, it exhibits a sequence of dynamical
behaviors analogous to development in an organism. For ex-
ample, an initial pattern of normal spiral waves progresses to
segmented spirals or to the combination of segmented spirals and
jumping waves seen in Fig. 13A and then to a novel pattern, the
“jumping bubbles” shown in Fig. 13B. Ultimately, the system
“dies,” reaching the uniform steady state.

Interaction between Turing and wave instabilities can, at least
theoretically, produce a rich array of hybrid patterns, yielding
various combinations of spots, stripes and spirals as seen in Fig.

Fig. 11. Oscillatory Turing patterns. Stationary (A,B) and oscillatory
(C,D) Turing patterns in the BZ-AOT system at (A) 5 min, (B) 25 min (C)
35 min, (D) 35.5 min after the emergence of the pattern. (E) Space-time
dependence along the gray line in snapshot (B). Arrows in (E) correspond
to snapshots (A), (B), and (C,D). Parameters: ω = 9, ϕd = 0.39, [NaBrO3]
= 0.27 M, [MA] = 0.20 M, [H2SO4] = 0.32 M, [Ru(bpy)3

2+] = 4.0 mM. Frame
sizes: (A-D) 5.6 mm × 4.2 mm, (E) 3 mm × 40 min. From Kaminaga et al.
(2005a).

Fig. 12. Structured waves. Segmented spirals (A) from Vanag and
Epstein (2003b) and dashed waves (B) in the BZ-AOT system.

Two or more different instabilities, Turing, Hopf,
wave, and excitability, can interact and produce
even more complex patterns. Recently, oscillatory
Turing patterns were found both in the BZ-AOT
system (Kaminaga et al., 2005a) (see Fig. 11) and
in the CDIMA reaction (Míguez et al., 2006). These
patterns are the result of interaction between Tur-
ing and Hopf instabilities. One can imagine a
situation in which it would be quite difficult, from
experimental observations alone, to distinguish
oscillatory Turing patterns from standing waves.

Segmented spirals and dash-waves (Fig. 12),
Fig. 13. The BZ-AOT system. (A) Segmented spiral and jumping waves. (B) Jumping
bubbles. From Vanag (2004).

B

C

D
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A BA

BA
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14 (Yang and Epstein, 2003a). Interaction between a pair of
Turing instabilities can occur in bistable and in multilayer systems
and is thought to be responsible for “black eye” and “white eye”
superlattice patterns (Bachir et al., 2001; Yang et al., 2002).

Conclusion

Reaction-diffusion systems can produce a diverse and beau-
tiful array of spatial and spatiotemporal patterns, many of which
resemble structures and phenomena seen in living systems.
These patterns are observed and studied both in relatively simple
experimental systems, which allow for considerable control over
the system parameters, and in mathematical models. Interest-
ingly, many of these systems display a form of multistability, in
which the same set of parameters can yield two or more qualita-
tively different behaviors or patterns, and the one that is ultimately
selected depends upon the initial conditions or the past history of
the system.

It is important to note that, in all cases of which we are aware,
any single pattern can be explained by at least two different
mechanisms. Thus, while models may yield important insights
into the origin of pattern formation, one should be wary of the
“same pattern implies same mechanism” fallacy. Proposed mecha-
nisms require extensive testing by all available experimental
means. The only way to decide which of two plausible mecha-
nisms is “better” is to apply both mechanisms over a range of
conditions, not just to a single experiment, and see which one’s
predictions are robust.

The richness of behavior generated by relatively simple chemi-
cal systems like the BZ-AOT system is truly impressive. On the
one hand, it offers some hope that we can begin to understand
pattern-forming process in biology by looking at simpler, more

Fig. 14. Hybrid patterns resulting from interaction between Turing

and wave instabilities in a model of two coupled layers. From Yang
and Epstein (2003a).

easily controlled systems. On the other hand we see that an
increase of the number of species involved in pattern formation
mechanism leads to more complex patterns. For example, pat-
terns generated by wave instability like standing waves (Fig. 8),
require three variables and cannot arise in two-variable models.
Experiments and modeling with two coupled layers, i.e., four or
five variable systems, demonstrate even richer behavior due to
interaction between different instabilities (Fig. 14). If a handful of
inorganic chemicals can already generate such an immense
variety, the range of possibilities available to the molecules of life
seems almost unimaginable. Nevertheless, the results obtained
in our “simple” systems and their striking similarity to living
patterns suggest that chemistry may have much to teach us about
the constraints that ultimately determine the range of biologically
accessible patterns.
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