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ABSTRACT  Primordial germ cells (PGCs) are the stem cell precursors of the germ line. Several

growth factors contribute to enlarging the PGC population by acting as mitogens, survival factors

or both. Interleukin-2 (IL-2) has a growth-promoting activity for T and B-lymphocytes, but its role

in PGCs had not yet been studied. Here, we show that PGCs isolated from 10.5, 11.5 and 12.5 day

postcoitum (dpc) mouse embryos constitutively express the three subunits (α, β and γ) of the IL-

2 receptor (IL-2R). In contrast, IL-2 mRNA was not detected in these cells. However, the addition

of recombinant IL-2 to the culture medium increased the number of PGCs in vitro via a mitogenic

effect, as indicated by bromodeoxyuridine incorporation assays. Neutralization of the IL-2

receptor using anti-IL-2R subunit antibodies inhibited this IL-2-mediated proliferative effect on

PGCs from 11.5 dpc embryos. Together, these data are indicative of a paracrine effect of IL-2 on

PGC proliferation. In this regard, we also compared the effect of IL-2 with other compounds such

as basic fibroblast growth factor (bFGF), steel factor, leukemia inhibitory factor and forskolin, and

found that the degree of proliferation induced by IL-2 was similar to that induced by bFGF and

forskolin. These observations support the notion that similar patterns of molecular signaling may

underlie the developmental pathways of hematopoietic and germ stem cell precursors.
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Primordial germ cells (PGCs) are the stem cell progenitors of the
germ line. They exhibit phenotypic differentiation without losing
their pluripotency. In the mouse embryo, PGCs can be first de-
tected around 7 days postcoitum (dpc) as a small cluster of alkaline
phosphatase positive cells in the extraembryonic mesoderm, at the
posterior region of the primitive streak and at the base of the
allantois (McLaren, 2003). From this region, they move into the
embryonic hindgut endoderm (8-9 dpc) and at 9.5 dpc start to
migrate actively from the hindgut wall towards the growing urogeni-
tal ridges, where they finally colonize the developing gonads at
12.5 dpc (Molyneaux and Wylie, 2004). During their migratory
phase, the PGC population expands from approximately 100 cells
in 8.5 dpc mouse embryos, to 3,000 cells in 11.5 dpc embryos,
reaching around 25,000 PGCs at 12.5 dpc (Tam and Snow, 1981).
By 12.5 dpc, PGCs in the male genital ridge start entering into
mitotic arrest, whereas female germ cells arrest at meiotic prophase
I, which takes place later at 13.5/15.5 dpc (McLaren, 2003).

Somatic cells contribute to the increase in PGC numbers by
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means of soluble growth factors, which are known to stimulate the
proliferation and/or survival of mouse PGCs in culture (De Felici et
al., 2004). For example, basic fibroblast growth factor (bFGF),
tumor necrosis factor-α (TNF-α) and bone morphogenetic protein-
4 (BMP-4) (Resnick et al., 1992) are mitogens for PGCs. In
contrast, other cytokines such as interleukin-4 (IL-4), interleukin-6
(IL-6), interleukin-11 (IL-11) and leukemia inhibitory factor (LIF)
have been found to enhance the survival rather than the prolifera-
tion of PGCs in culture (De Felici and Dolci., 1991; Cooke et al.,
1996; Cheng et al., 1994; Koshimizu et al., 1996). Finally, Steel
Factor (SF) is able to increase both PGC proliferation and survival

Abbreviations used in this paper: AGM, aorta-gonadomesonephros; AP, alkaline
phosphotase; BMP, bone morphogenetic protein; BrdU,
bromodeoxyuridine; dpc, days post coitum; F, forskolin; FGF, fibroblast
growth factor; HSC, hematopoietic stem cell; IL, interleukin; LIF, leukemia
inhibitory factor; PGC, primordial germ cell; SF, steel factor; TGF-β1,
transforming growth factor beta1; TNF, tumor necrosis factor.
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(Godin et al., 1991; Dolci et al., 1991, Pesce et al., 1993), whereas
factors such as transforming growth factor-β1 (TGF-β1) and
activin appear to negatively regulate PGC proliferation (Godin
and Wylie, 1991).

Interleukin-2 (IL-2) is a potent, multifunctional cytokine that
plays a central role in the growth-stimulatory activity of T lympho-
cytes. It also participates in multiple biological processes, includ-
ing the growth and differentiation of B lymphocytes, the liberation
of lymphokine-activated killer lymphocytes and the proliferation
and maturation of oligodendroglial cells (Gaffen and Liu, 2004).
The biological effects of IL-2 are mediated by a specific cell
surface receptor (IL-2R) which consists of three subunits (IL-2Rα,
IL-2Rβ and IL-2Rγ), also known as p55, p75 and p64, respectively
(Wang et al., 2005). The expression of different combinations of
these three components gives rise to the generation of various
subtypes of the IL-2 receptor, each of which exhibits different
binding affinities for IL-2 (Kim et al., 2006). The IL-2Rα subunit is
responsible for specific binding of IL-2, whereas both the β and γ
subunits increase the strength of ligand receptor binding and
enable the receptor to transduce its signal to the cytoplasm (Wang
et al., 2005). Recent studies have shown that the γ chain is
present as a functional subunit in many cytokine receptors, such
as those for IL-4, IL-7, IL-9, IL-13, IL-15 and IL-21, (Noguchi et al.,
1993; Giri et al., 1994; He and Malek, 1995; Sugamura et al.,
1996; Asao et al., 2001). Consequently, it has been designated as
the common γ chain.

IL-2 is expressed in hematopoietic stem cells (HSC) in 7.5 dpc
embryos (Yoder, 2001, 2004). At this stage, HSCs are found in

extraembryonic sites such as the yolk sac and the trophoblast, but
at 10.5 to 12.5 dpc they are also located in embryonic organs and
regions such as the liver, thymus and the aorta-
gonadomesonephros region (AGM) (Godin et al., 1995; Cairns et
al., 2003), thus coinciding spatially with PGCs. The fact that the
lineage specification of both cell types occurs within the same
embryonic territory, at similar developmental stages and may be
regulated by common genomic loci has led to the proposal that
PGCs might be the precursors of HSCs or that they could have a
common embryonic stem cell precursor. Indeed, EG-PGC-de-
rived cells can be easily induced to differentiate into hematopoi-
etic cells when cultured in methylcellulose in the presence of IL-
3 (Rich, 1995; Othaka, et al., 1999). Similarities between HSCs
and PGCs led us to wonder if PGCs share also the mitogenic
response to IL-2 previously observed in hematopoietic cells. In
the present work, we show that the three subunits of IL-2R (α, β
and γ), but not IL-2, are constitutively expressed on the surface of
PGCs isolated from 10.5, 11.5 and 12.5 dpc embryos and that this
receptor mediates a mitogenic effect of IL-2 on PGCs cultured in
vitro.

Results and Discussion

Expression of components of the IL-2/IL-2R system
The IL-2/IL2R system is normally expressed in T, B and NK

lymphocytes to stimulate their proliferation via a community effect
(Leonard et al., 1984). Other kinds of cells, such as dendritic cells
(Granucci et al., 2001), macrophages (Gaffen and Liu, 2004) and
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Fig. 1 (Left). Expression of IL-2, IL-2Rααααα and IL-2Rβββββ genes in primordial

germ cells (PGCs) and somatic cells. The expression of IL-2, IL-2Rα, IL-
2Rβ and β-actin was analyzed by RT-PCR in PGCs and gonadal somatic
cells from E10.5, E11.5 and E12.5 embryos, spermatogonia, isolated
testis somatic cells and the STO mouse embryonic fibroblast cell line.
RNA from murine splenic mononuclear cells activated with phytohemag-
glutinin-M was used as a positive control for IL-2, IL-2Rα and IL-2Rβ.
Negative controls (-) consisted of PCR reaction performed without cDNA. The sizes of the amplified products are shown in Table 1. The α and β subunits
of the IL-2R are expressed in PGCs and somatic cell samples at 10.5, 11.5 and 12.5 dpc, but IL-2 mRNA was not detected in any of them. Only the
IL-2Rβ subunit is present in the STO cell line.

Fig. 2 (Right). Immunolocalization of the ααααα, βββββ and γγγγγ subunits of IL-2R. Immunofluorescent confocal microscope images of PGCs from 11.5 dpc
embryos, using anti-IL-2Rα (A), anti-IL-2Rβ (B) and anti- IL-2Rγ antibodies (C). Cells were fixed with 4% paraformaldehyde and incubated with the
corresponding anti-mouse IL-2R α, β and γ antibody, followed by FITC conjugated rat anti-mouse IgG. (D) As a negative control, PGCs were only
incubated with the secondary antibody. All subunits were found to be located on the surface of PGCs. The objective used was x 60. The image format
was 1024 x 1024 pixels. Bar, 10 µm.
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melanoma cells (Boyano et al., 1998; García Vazquez et al.,
2000) also express this cytokine and its receptor. In the present
study, expression of the IL-2, IL-2Rα and IL-2Rβ genes was
analyzed by RT-PCR using total RNA purified from PGC and
somatic cell samples with a purity higher than 90% (Fig. 1). The
PCR products were then subjected to electrophoresis and IL-2Rα
and IL-2Rβ subunit bands were detected in the lanes correspond-
ing to PGCs and somatic cells from 10.5, 11.5 and 12.5 dpc
embryos, spermatogonia stem cells and testicular somatic cells.
IL-2Rβ mRNA was also detected in the STO mouse embryonic
fibroblast cell line. However, IL-2 expression was not observed in
any of the analyzed samples. Expression of IL-2Rγ was not
examined by PCR since its presence in PGCs has been previ-
ously reported (Cooke et al., 1996).

To verify the expression of IL-2R subunit peptides (α, β and γ)
on the surface of PGCs, indirect immunofluorescence assays
were performed using confocal microscopy. IL-2Rα (Fig. 2A), IL-
2Rβ (Fig. 2B) and IL-2Rγ (Fig. 2C) peptides were found to be
expressed on the surface of PGCs at 11.5 dpc. As a negative
control, we omitted the primary antibody during the immunocy-
tochemical procedure, which led to the absence of immunofluo-
rescence (Fig. 2D). Thus, we show that PGCs might be a target
of the IL-2 cytokine since α, β and γ chains of the IL-2R were found

to be expressed in isolated PGCs from 10.5, 11.5 and 12.5 dpc
embryos, at mRNA and protein levels. We also show that the α
and β subunits of the IL-2R are still expressed in postnatal
spermatogonia (Fig. 1).

Effects of IL-2 and IL-2R blockade on PGC proliferation
PGCs at 10.5, 11.5 and 12.5 dpc were cultured on STO

fibroblast feeder layers in the presence of 15% FCS and treated
with IL-2 at 0, 10, 50, 100 and 500 U/ml for 24 hours. Each
treatment was performed in triplicate and alkaline phosphatase
quantification experiments were repeated three times. The mean
values associated with the three experiments are illustrated in
Fig. 3A. IL-2 did not exhibit any effect on 10.5 dpc PGCs at 10 U/
ml after 24 hours, but a significant proliferative effect was ob-
served in 11.5 and 12.5 dpc PGCs (p<0.01). Nevertheless, at
doses of 50, 100 and 500 U/ml, IL-2 did significantly increase the
number of PGCs from 10.5, 11.5 and 12.5 dpc embryos (p<0.01).
As a positive control, PGCs from the same experiments were
cultured in the presence of forskolin at 10 µM for 24 hours and the
proliferative effect was found to be quite similar to that of IL-2. This
result indicates that IL-2 may act as a paracrine or endocrine
growth factor for mouse PGCs.

Male PGCs start to undergo mitotic arrest normally at 12.5 dpc

Fig. 3. Effect of IL-2 on PGC proliferation. (A) The effect of various doses of mouse recombinant IL-2 on the number of PGCs, measured as alkaline
phosphatase (AP) positive cells, isolated from 10.5, 11.5 and 12.5 dpc embryos, cultured on STO feeder cells and treated for 24 h. Bars represent the
mean number of PGCs per well plus standard deviation of three replicate wells. After 24 hours, IL-2 at 10 U/ml showed a significant proliferative effect
in 11.5 and 12.5 dpc PGCs, but not in 10.5 dpc (p<0.01). Nevertheless, at doses of 50, 100 and 500 U/ml, IL-2 did significantly increase the number
of PGCs from 10.5, 11.5 and 12.5 dpc embryos (p<0.01). The illustration shows a culture of 10.5 dpc PGCs treated for 24 h with IL-2 (500 U/ml) on
STO feeder cells and stained for AP (Bar, 100 µm). (B)Proportion (%) of BrdU-labeled cells with respect to the total number of AP positive cells, taking
as control (100%) the number of double-stained cells obtained in non-treated cultures. PGCs isolated from 10.5, 11.5 and 12.5 dpc embryos were
cultured for 1 day as above and treated with the indicated doses of IL-2 for 24 h. Subsequently, they were labeled with BrdU and histochemically double-
stained for BrdU and AP. The increase in proliferation was around 12-25% in all the PGC cultures. The forskolin (F) control produced a proliferative
effect between 25-35% in PGCs from 10.5, 11.5 and 12.5 dpc embryos. (*) Significant at P<0.05; (**) significant at P< 0.01. The illustration to the
right shows a culture of PGCs after BrdU incorporation assay plus IL-2 (500 U/ml) treatment. Black arrows point to proliferating PGCs, which are double
stained for BrdU and AP (Bar, 50 µm).
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but, curiously enough, 12.5 dpc and 11.5 dpc PGCs show a very
similar response to IL-2. Moreover, these cells are the only ones
that significantly increase their proliferation rate at the lower IL-2
concentration (10 U/ml), suggesting that they express more IL-2
receptor than 10.5 dpc cells, or that their IL-2 receptor is more
sensitive or more efficiently coupled to second messenger cas-
cades. This finding opens up the possibility that IL-2 could delay
or even revert the mitotic arrest which occurs in 12.5 dpc male
PGCs. Indeed, IL-2 mediated reversion of mitotic arrest may
constitute one component of the pathological progression of
embryonal carcinoma of the gonads (Diez-Torre et al., 2004).

Bromodeoxyuridine (BrdU) incorporation assays were per-
formed in order to examine if IL-2 was acting as a mitogen or a
survival factor in this cell population. In these experiments PGCs
from 10.5, 11.5 and 12.5 dpc embryos were double-stained for
BrdU incorporation and alkaline phosphatase activity (Fig. 3B).
We found that there were changes in the proportion of BrdU
positive cells in 10.5, 11.5 and 12.5 dpc PGCs treated with IL-2 at
all doses. Increase in proliferation was around 12- 25% in PGCs
from 10.5 to 12.5 dpc embryos with respect to the BrdU positive
PGCs in untreated cultures (control, considered as 100%). The
forskolin control (10 µM) produced a proliferative effect of around
25-35% in PGCs from 10.5, 11.5 and 12.5 dpc embryos. These
assays reveal that the increase in number of PGCs in culture after
treatment with IL-2 was due to a mitogenic rather than a survival
effect. This IL-2 effect is different to that of other interleukins, such
as IL-4, IL-6 and IL-11, which only exert a survival effect (De Felici
and Dolci., 1991; Cooke et al., 1996; Cheng et al., 1994; Koshimizu
et al., 1996). However, it coincides with the proliferative effect of
IL-2 on T lymphocytes (Cornish et al., 2006).

We neutralized IL-2 receptor subunits with anti-IL-2Rα, β and
γ blocking antibodies, independently or as a combination of
subunit blockers, for 2 hours and then the cells were incubated in
the presence or absence of 500 U/ml IL-2 for 24 hours (Fig. 4). We
found that blocking the IL-2Rα, β and γ subunits independently or
as combinations of βγ or αβγ subunit blockers did not have a
significant effect on PGC proliferation rate (Fig. 4A). However,
under the same conditions but in the presence of IL-2, a significant
inhibition of PGC proliferation was observed (Fig. 4B). The
percentage of inhibition was 45% when the α subunit was neutral-
ized, while other blockades led to an inhibition of about 30%
compared with those cultures treated with 500 U/ml IL-2 in the

absence of blocking antibodies. These results demonstrate that
this effect is specifically mediated by the IL-2R, since blockade of
any of its subunits with subunit-specific antibodies abrogated the
IL-2 mitogenic effect on PGC cultures.

Finally, we compared the proliferative effect of IL-2 with other
cytokines which are known mitogen and/or survival factors such
as bFGF (mitogen), LIF (survival factor) and SF (mitogen +
survival factor). We cultured PGCs at 11.5 dpc on STO feeder
layers in the presence of 15% FCS, supplemented with IL-2 (500
U/ml), bFGF (10 ng/ml), SF (20 ng/ml) or LIF (10 ng/ml) for 24
hours. We found that the proliferative effect of IL-2 was very
similar to that of bFGF, SF and LIF in PGCs from 11.5 dpc
embryos (p<0.05) (Fig. 5), supporting the idea that IL-2 plays a
physiologically relevant role in the regulation of the PGC popula-
tion at this developmental stage. Since a variety of growth factors
and cytokines increase PGC numbers in vitro, as mentioned
before, the lack of one of them would not necessarily have a
significant effect on germ line development, because its function
could be replaced by other factors (factor redundancy). In fact,
transgenic mice with deletion of the γ subunit of the IL-2R
(necessary for IL-2 signal transduction) do not show any signifi-
cant alteration of their gonads (DiSanto et al., 1995).

Common role of the IL-2/IL-2R system in PGC and HSC
development

A possible physiological role for IL-2 in PGCs in vivo is
supported by the presence of this cytokine in the embryo in places
where PGC migration and proliferation take place. Expression of
IL-2 in vivo has been shown in several tissues such as the
decidua, placenta (von Rango et al., 2003) and embryonic liver,
thymus, pharyngeal blood vessels and omentum (Godin et al.,
1995; Reya et al., 1996). The expression of IL-2 and its receptors
in various tissues of the postimplanted embryo was found to be
associated with the location of HSCs and their differentiation into
extrathymic T cells during development (Murray et al., 1998). IL-
2 is also expressed by HSCs which spatially coincide with PGCs
in early embryos (Zeigler et al., 2006). In addition, it is already well
known that the embryo receives maternal growth factors through
the placenta (McLennan and Koishi, 2004), raising the possibility
that maternal IL-2 could also have a role in PGC development.

Our findings of a functional IL2/IL2R system for PGC prolifera-
tion show another similarity between HSCs and PGCs, supporting

BA
Fig. 4. Inhibition of IL-2 mediated

proliferation of PGCs using anti-

IL-2Rααααα, anti-IL-2Rβββββ and anti-IL-

2Rγγγγγ blocking antibodies, either

alone or in combination. 11.5 dpc
PGCs were incubated with block-
ing antibodies for 2 h and subse-
quently with 500 U/ml of recombi-
nant IL-2 for 24 hours. The number
of PGCs was determined by count-
ing AP positive cells. Blockade of
the different subunits had no sig-
nificant effect on the PGC numbers
in untreated cultures (A) while in IL-
2 treated cultures the blocking antibodies reduced very significantly (up to 45%; ** = p<0.01) the number of PGCs compared with IL-2 treated cultures
without blocking antibodies (dotted line) (B). The data represent the mean ±  SD of triplicate cultures from three separate experiments.
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the hypothesis of a common stem cell precursor or, at least, a
close developmental pathway for these two cell lineages. Genetic
studies have shown that the development of hematopoietic cells
parallels that of germ cells. Natural mutations at the W and Steel
loci, encoding the tyrosine kinase receptor c-Kit and its SF ligand
(also known as SCF, MGF or KL), respectively, determine a
phenotype causing embryonic death at 14-15 dpc due to anemia.
W/W and Sl/Sl embryos also lack germ cells and melanoblasts
(for a review see Besmer, 1991). SF exerts pleiotropic effects on
PGC and hematopoietic cell proliferation and survival (Matsui et
al., 1991, Godin et al., 1991; Dolci et al., 1991, Carson et al., 1994)
and both PGCs and HSCs adhere to somatic cells by expressing
the membrane-bound variant of SF (Pesce et al., 1997; Bendall et
al., 1998). The enhanced SF-mediated survival of germ and
hematopoietic cells in vitro is probably due to the suppression of
similar apoptotic pathways, which involve the control of expres-
sion of Bcl-2 and Bax (Pesce et al., 1993; Carson et al., 1994; De
Felici et al., 1999). During mouse embryogenesis, restriction of
hematopoietic potential to cells of the posterior part of the epiblast
is established. Before gastrulation, all epiblastic cells are equally
able to enter the hematopoietic lineage while, as gastrulation
proceeds, this ability is confined to the extraembryonic mesoder-
mal compartment, where progenitors of HSCs and PGCs are
allocated (Kanatsu and Nishikawa, 1996; Lawson and Hage,
1994). Interestingly, stimulation of anterior epiblastic cells of
gastrula stage embryos with secreted Bmp-4 inhibits their differ-
entiation pathway as neuroectodermal cells and restores their
ability to form hematopoietic colonies (Kanatsu and Nishikawa,
1996). Moreover, ablation of Bmp-4 by homologous recombina-
tion impairs the formation of the extraembryonic mesodermal
compartment (Winnier et al., 1995) and affects, dose-depen-
dently, the segregation of the PGC founder population and
hematopoietic precursors (Lawson et al., 1999; McLaren, 1999;

Fujiwara et al., 2001). Mutation of the β1-integrin gene causes a
hematopoiesis defect in fetal liver but not in yolk sac (Fassler and
Meyer, 1995). This suggests that mechanisms of cell adhesion/
migration are involved in the allocation of a precursor of HSCs in
the aorta-gonadomesonephros (AGM) before they enter into the
dorsal aorta. Similar integrin-mediated adhesion mechanisms
have been also suggested for PGCs (De Felici and Dolci, 1989;
French-Constant et al., 1991). In line with these arguments, it has
been shown that mice defective for β1-integrin also exhibit an
impaired migration of PGCs towards the AGM region and gonadal
ridges (Anderson et al., 1999). Moreover, HSCs and PGCs
appear to share homing mechanisms mediated by SDF-1 and its
receptor CXCR4. In fact, mice lacking either SDF-1 or CXCR4
have impaired colonization of bone marrow and gonads (Ma et al.,
1998; Ara et al., 2003).

In summary, we provide evidence that PGCs express func-
tional IL-2 receptors during their migration to and colonization of
gonadal ridges and that the IL-2 cytokine increases the in vitro
proliferation of PGCs through a mitogenic, rather than survival,
effect. Thus, these results support the hypothesis that the IL-2/IL-
2R system may be involved in the proliferation and differentiation
of PGCs in mouse embryos, in a manner similar to that which
occurs in embryonic hematopoiesis.

Experimental Procedures

Isolation and culture of mouse PGCs
PGCs were isolated and purified from the gonadal ridges of mouse

embryos at 10.5, 11.5 and 12.5 dpc using the Mini-Macs system (Pesce
and De Felici, 1995). They were then cultured on mitomycin C inactivated
STO fibroblast monolayers in DMEM. The medium was supplemented
with 15% FCS, N-acetyl-cysteine (Sigma, St. Louis, MO, USA), sodium
pyruvate (Sigma, St. Louis, MO, USA) and cells were seeded (about 1
gonadal ridge equivalent/well) in 24-well culture plates. The purity of the
obtained PGC samples was higher than 90% as determined by PGC-
specific alkaline phosphatase staining.

Isolation of spermatogonia cells
Spermatogonia were obtained from 6-7 day-old mice testes. Decapsu-

lated testes were digested with collagenase-II (Sigma, St. Louis, MO,
USA). Seminiferous tubuli were isolated after centrifugation at 85 g for 7
minutes and subsequently digested with a trypsin-EDTA salt solution
(Invitrogen Life Technologies, Carlsbad, CA) and DNase-I (Sigma, St.
Louis, MO, USA). The obtained cell suspension was filtered using a nylon
net (Falcon; BD Biosciences, Heidelberg, Germany) to remove cell
aggregates and was centrifuged at 390 g for 10 min. In order to separate
spermatogonia from somatic cells, cell suspensions were plated into
culture flasks and maintained at 32°C overnight in DMEM supplemented
with 10% FCS, 32 mM NaHCO3, 2 mM glutamine, 100 U/ml penicillin and
100 µg/ml streptomycin (Sigma, St. Louis, MO, USA). Spermatogonia
(which remained in suspension) and somatic cells (which adhered to the
substrate) were collected separately and washed before experiments.
Cell suspensions were incubated with anti-vimentin-FITC in order to
analyze spermatogonia and somatic cell sample purity by flow cytometry
analysis. Spermatogonia were identified as vimentin-negative cells, while
testicular somatic cells were vimentin positive (data not shown). Only
those samples with a purity over 90% were used for experiments.

Other Cells
The STO mouse embryonic fibroblast cell line (European Collection of

Cell Cultures, Salisbury, UK) was cultured with DMEM supplemented with
10% FCS, 32 mM NaHCO3, 2 mM glutamine, 100 U/ml penicillin and 100

Fig. 5. Comparison of the effects of IL-2 and other growth factors on

PGC proliferation. 11.5 dpc PGCs were cultured on STO feeder layers
in the presence of 15% FCS, supplemented with IL-2 (500 U/ml), bFGF
(10 ng/ml), SF (20 ng/ml), LIF (10 ng/ml) or forskolin (F, 10 µM) for 48
hours. The number of PGCs was determined by counting AP positive
cells. The graph shows that the proliferative effect of IL-2 was very similar
to that of bFGF and forskolin in PGCs from 11.5 dpc embryos (p<0.05).
The effect of SF and LIF was always proliferative with respect to the
control (p<0.05), but the effect of these cytokines was smaller than that
of IL-2. The data represent the mean ±  SD of triplicate cultures from three
separate experiments. (*) Significant difference at p<0.05.
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µg/ml streptomycin (Sigma, St. Louis, MO, USA). Murine splenic
mononuclear cells were used as positive controls for IL-2/IL-2R
expression. These cells were isolated, activated and cultured as
previously described (Boyano et al., 1998).

Reverse-transcription and PCR
Total RNA from PGCs, gonadal ridges and testicular somatic

cells, spermatogonia, mouse embryonic fibroblasts STO and acti-
vated mononuclear cells was purified using the RNeasy Mini Kit
(Qiagen, Hilden, Germany). Reverse-transcription was performed
using the RETROscript kit (Ambion, Austin, TX, USA). PCR was
achieved with the Platinum PCR Supermix (Invitrogen Life Tech-
nologies, Carlsbad, CA), according with the manufacturer’s in-

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA), and anti-mouse IL-2Rγ
(1 µg/ml) (BD Biosciences, Heidelberg, Germany). Then, they were
incubated for 24 hours in the presence or absence of recombinant IL-2
(500 U/ml). Cell growth was determined by proliferation assays with
alkaline phosphatase staining in microplates as described above. Prolif-
eration was expressed as the percentage of PGCs with respect to the
number of PGCs in similar conditions but in the absence of subunit
antibodies (n=3 independent experiments).

Statistics
Values are expressed as means + standard deviation (n=3). Signifi-

cance was defined as p <0.05 (*) and p<0.01 (**). Statistical analyses
were performed using the ANOVA test with SPSS 12.0 for Windows.
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