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ABSTRACT  Plant cell morphogenesis depends critically on two processes: the deposition of new

wall material at the cell surface and the mechanical deformation of this material by the stresses

resulting from the cell’s turgor pressure. We developed a model of plant cell morphogenesis that

is a first attempt at integrating these two processes. The model is based on the theories of thin

shells and anisotropic viscoplasticity. It includes three sets of equations that give the connection

between wall stresses, wall strains and cell geometry. We present an algorithm to solve these

equations numerically. Application of this simulation approach to the morphogenesis of tip-

growing cells illustrates how the viscoplastic properties of the cell wall affect the shape of the cell

at steady state. The same simulation approach was also used to reproduce morphogenetic

transients such as the initiation of tip growth and other non-steady changes in cell shape. Finally,

we show that the mechanical anisotropy built into the model is required to account for observed

patterns of wall expansion in plant cells.
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Introduction

Plant cells acquire specific shapes according to two major
modes of morphogenesis called diffuse growth and tip growth. In
diffuse growth, expansion of the cell surface is distributed uni-
formly over the whole cell (Castle, 1955; Green, 1963). This mode
of morphogenesis is seen in most cells of multicellular plants and
in many algae. In tip growth, cells form long cylinders capped by
a prolate dome where surface expansion takes place (Haberlandt,
1887; Reinhardt, 1892; Castle, 1958; Chen, 1973; Hejnowicz et
al., 1977; Shaw et al., 2000; von Dassow et al., 2001). Tip growth
is seen in a wide range of cells including root hairs, fungal hyphae
and pollen tubes (Heath, 1990).

Diffusely-growing and tip-growing cells are surrounded by a
stiff wall that maintains cell shape. Consequently, plant cell
growth and morphogenesis are possible only to the extent that
cells can cause their surrounding wall to expand locally. Wall
expansion requires two complementary processes: i) the addition
of new wall material by secretion and synthesis at the cell
membrane and ii) the mechanical deformation of the wall via the
tensional stresses excerted by the internal turgor pressure of the
cell. The integration of these two processes into a single model of
cell morphogenesis is a daunting task although some observa-
tions suggest a possible starting point. First, in a wide range of cell
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types it is possible to stop cell enlargement while wall deposition
is maintained for some time leading to local thickening of the cell
wall (Kiermayer, 1964; Schröter and Sievers, 1971; Roy et al.,
1999). This treatment shows that deposition of wall material alone
is not sufficient to drive expansion of the cell surface. On the other
hand, stretching of the cell surface by turgor pressure cannot
proceed without addition of new wall material because the cell
wall would quickly thin and rupture. Based on these observations
we propose a model where secretion and wall synthesis lead to
growth in thickness while mechanical deformation by turgor
pressure leads to expansion of the cell surface (Fig. 1A).

Historically, the mechanical deformation of the cell wall has
been described using viscoplasticity theory (Lockhart, 1965a,b;
Probine, 1966; Green et al., 1971; Ortega, 1990). A viscoplastic
material differs from a viscous fluid in that it deforms irreversibly
only for stress values that are beyond a plastic yield stress ( ).
Below the yield stress, the material deforms elastically but sus-
tains no permanent deformation. For a stress greater than the
yield stress, the rate of plastic deformation ( ) is proportional to the
material extensibility  (an inverse viscosity) and to the applied
stress  in excess of the yield stress. For uniaxial deformation, we
write: , . An equation of this form was first
proposed by Bingham (1922) to describe the flow of certain fluids
such as paint and was later applied to wall extension by Lockhart
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(1965a,b). Since Lockhart, this simple equation has been used
extensively to gain insights into the mechanics of cell growth. An
important conclusion emerging from this work is that wall exten-
sibility and its yield stress are not static mechanical properties
(Green et al., 1971; Money and Harold, 1992); rather they are
continually modulated by the cell both spatially and temporally.

Evidence for the viscoplastic model was obtained by manipu-
lating turgor pressure in growing cells (Green et al., 1971; Passioura
and Fry, 1992; Proseus et al., 1999). In this type of experiment,
small increases and decreases in turgor pressure result in dispro-
portionate increases and decreases in the rate of wall extension
as would be expected if this rate is governed by a relation like
Bingham’s equation. In more extreme cases where turgor pres-
sure is reduced to less than 30-50% of its normal value, cell
expansion stops completely indicating that some threshold level
of turgor pressure (yield stress) is necessary to drive wall exten-
sion (Cleland, 1959; Green et al., 1971; Cosgrove, 1985; Zhu and
Boyer, 1992).

Although the viscoplastic model for wall extension is supported
experimentally, it says little about the connection between wall
assembly and wall mechanics. Numerous experiments have
shown that the mechanical properties of the cell wall are, to a large
extent, determined by the orientated deposition of cellulose

microfibrils (Baskin, 2001). At least three broad types of cellulose
organization must be considered (Fig. 1B). Cellulose microfibrils
could be oriented randomly in all directions. The mechanical
properties of the cell wall would then be isotropic. On the other
hand, it is also possible for the cell wall to be organized into layers
with randomly arranged cellulose microfibrils within each of these
layers (Fig. 1B). This is in fact the wall organization observed in
tip-growing cells (Houwink and Roelofsen, 1954; Belford and
Preston, 1961; Newcomb and Bonnett, 1965; Kataoka, 1982). For
this wall organization we expect the mechanical properties in the
plane of the wall to be isotropic but these properties would likely
differ from those in the normal direction because no cellulose
microfibrils are aligned in that direction. This condition is called
transverse isotropy. Finally, it is possible for the cellulose mi-
crofibrils to be aligned preferentially in one direction and thus
provide full mechanical anisotropy to the cell wall (Fig. 1B). This
wall organization is observed in many diffusely-growing cells such
as the Nitella internodal cell (Green,1962; Probine, 1966; Métraux
et al., 1980; Richmond et al., 1980).

The goal of this paper is to develop a new model of plant cell
morphogenesis based on a generalized Bingham’s equation that
accounts for the mechanical anisotropy arising from the orienta-
tion of cellulose microfibrils in the wall. We illustrate the funda-
mental features of this model using numerical simulations and
comparisons with data from the literature.

Mechanics of plant cell morphogenesis

The mechanical aspect of plant cell morphogenesis can be
viewed as the deformation of a thin pressurized shell (see for
example Martynov, 1975; Hejnowicz et al., 1977; Chaplain and
Sleeman, 1990; Steele, 2000). A shell is considered thin if it has
a small thickness compared to its other spatial dimensions
(Flügge, 1973). This definition fits most growing plant cells
which typically have a wall thickness of 0.1-0.5 m and radii of

Fig. 1. Wall growth and structural anisotropy. (A) Two processes
necessary for wall growth: mechanical deformation to increase the wall
surface area and material deposition to preserve the thickness and
integrity of the wall. (B) Three different types of wall architecture based
on the orientation of cellulose microfibrils. Fully isotropic wall structures
are not observed in nature. Transverse isotropy is typical of tip-growing
cells and full anisotropy is typical of diffusely-growing cells. See Fig. 4 for
a definition of the three principal axes.

Fig. 2. Fundamental mechanical relations for cell morphogenesis.

Cellular control of morphogenesis is possible via the wall mechanical
properties and turgor pressure.
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curvature in excess of 5 m.
Three types of variables must be considered in a description

of cell morphogenesis using shell theory. These variables are
the wall turgor stresses ( ), the wall strain rates ( ) and
geometrical variables such as the curvatures ( ) of the cell
surface and the cell wall thickness ( ). The connections be-
tween the stresses, strain rates and geometrical variables are
given by three fundamental relations (Ugural, 1999) (Fig. 2).
The constitutive relations describe the mechanical behavior of
the material. Specifically for the cell wall, they give the surface
strains in terms of the wall stresses and the wall mechanical
properties. The kinematic equations give the deformation of the
cell geometry that results from stretching of the cell surface.
This set of equations is derived from geometrical consider-
ations solely and does not require any assumption about the
mechanism of surface extension. Finally, the equilibrium equa-
tions describe the force balance on a shell element. For a plant
cell, there must be equilibrium between the normal force gen-
erated by turgor pressure and the wall tensions.

In considering the principles behind the morphogenesis of
walled cells we make the following assumptions:

i) Axisymmetric cell geometry - We consider the cell geom-
etry to be axisymmetric but otherwise free to change. The
axisymmetric geometry is a good approximation for many plant
cells and in particular for tip-growing cells (Fig. 3). Accordingly,
stresses and strain rates are defined along three principal
directions corresponding to the meridional (subscript ), cir-
cumferential (subscript ) and normal (subscript ) directions
on the cell (Fig. 4). Furthermore, for an axisymmetric geometry,
all variables and parameters such as the mechanical properties
can be expected to vary solely with the meridional position ( ).

ii) The rate of wall deposition matches the rate of wall
thinning due to in-plane expansion - Typically the thickness of
the cell wall in the growth zone is roughly constant (e.g.
Hejnowicz et al., 1977). We must thus conclude that the wall
thinning resulting from expansion of the cell surface is closely
matched by deposition of new wall material.

iii) Turgor pressure is supported by in-plane wall stresses -
Given that the cell wall is thin compared to the size of the cell
and that the curvature of the cell surface does not change
abruptly, it is fair to assume that turgor pressure is supported
only by tensional forces in the plane of the wall while, relative
to these, the normal (i.e., perpendicular to the cell wall surface)
stress and bending stresses are negligible. In other words, we
assume that the plant cell supports its internal turgor pressure
in a way analogous to a rubber balloon or a soap bubble. Note
that the absence of substantial stresses in the normal direction
does not preclude strain in that direction.

The above assumptions fit a wide range of diffusely-growing
and tip-growing cells. To these general assumptions we add
one assumption that applies specifically to tip-growing cells.

iv) The cell wall is transversely isotropic - Although our model
is derived for a fully anisotropic material, we want to consider
closely its application to tip growth where the random organiza-
tion of cellulose microfibrils in the plane of the cell wall suggests
that the mechanical properties would be transversely isotropic
(Fig. 1B). This conclusion is supported by recent observations
made on tip-growing root hairs (Dumais et al., 2004).

Constitutive relations
In order to relate turgor stresses to the rates of wall extension

we need some knowledge of the constitutive behavior of the wall
material. Bingham’s equation for a viscoplastic material under
uniaxial stress was generalized by Hohenemser and Prager
(1932), Prager (1937, 1961) and Oldroyd (1947) for a multiaxial
state of stress. Our derivation follows that of Prager (1937) and
standard treatments of plasticity (Hill, 1950). To represent the
constitutive behavior of the cell wall under multiaxial stress, the
uniaxial yield stress and flow are reformulated into a multiaxial
yield criterion and a flow rule.

Yield criterion - For multiaxial stress, we need a measure of
stress, , so that the cell wall yields for .
The function  is called the effective stress and the condition

 is the yield criterion. The turgor-induced stresses acting
on a volume element of wall material can deform this element by
dilatation (change in volume) and by distortion (shear strain).
Dilatational stress tends to expand or compress the wall volume
without causing distortion of the polymeric network, while distor-
tional stress distorts the material without necessarily changing its
volume. A general yield criterion can be formulated with these two
components of stress (Christensen, 1997) although yield is often
independent of moderate dilatation. For a polymeric material such
as the plant cell wall, the distortional stress promotes the slippage
of polymer chains that must occur during yielding. It is therefore

Fig. 3. Tip growth in root hairs. (A) Time-lapse images of an elongating
root hair of Medicago truncatula. Images were taken every 10 minutes.
Note the dense cytoplasm following precisely the advance of the tip.
Surface expansion is high near the pole of the cell and decreases to nearly
zero at the juncture between the dome and the cylindrical part of the cell.
A slight circumferential creep seems to persist even far from the growing
tip and this leads to a gradual widening of the cell axis. (B) Close-up of the
growing tip.
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natural to define  only in terms of distortional stress. For an
isotropic, incompressible material, a commonly used yield crite-
rion is the von Mises criterion:

(Ugural and Fenster, 1975). Because stresses are present only as
differences, the fraction of the total stress shared by all principal
directions (i.e., the dilatational stress) does not contribute to the
effective stress.

The energy that is stored in an elastic material that obeys
Hooke’s Law increases with the square of the imposed stresses
(Ugural and Fenster, 1975). The sum of the squares of the
differences in stress between the principal axes is thus an index
for the total distortional strain energy that is stored elastically in
the material. The von Mises yield criterion embodies, therefore,
the principle that irreversible deformation occurs when the distor-
tional energy in the material reaches a certain threshold value
(indexed by ).

Hill (1950) generalized the von Mises criterion to include

materials with anisotropic yield stresses ,  and  in the
,  and  directions. Hill’s yield criterion is:

(1)

Here,  is now a global yield stress to be defined in terms of the
uniaxial yield stresses. Values of the coefficients ,  and  are
found by evaluating the function for the three uniaxial states of
stress (e.g., by substituting  and  and ensur-

ing that the equation then reduces to ).
This gives: ,  and

.

Solving for each coefficient, we find:

(2)

If the cell wall is fully isotropic then  so that
Hill’s yield criterion reduces to the von Mises criterion. Hill’s
criterion extends to anisotropic materials the above-mentioned
principle that a material yields when the stored distortional energy
reaches a certain threshold value indexed by the square of the
material’s global yield stress, .

If Eq. (2) is substituted into Eq. (1) it will be seen that  is
present on both sides of the inequality. It can be concluded that
however  is defined it will not affect the yield criterion. In fact, 
could be eliminated altogether from Eq. (1). However, we keep 
in Eq. (1) to maintain a close parallel with Bingham’s equation. A
natural definition for  would be the mean of the three uniaxial
yield stresses but here we follow previous usage (Capsoni et al.,
2001) and define  solely in terms of the in-plane yield stresses,

that is, . The in-plane yield stresses are the
only yield stresses that are practical to measure experimentally
and the final equations take a simpler form when this choice is
made. We emphasize, however, that the conclusions of the paper
are not affected by the definition used for .

A useful graphical representation of the yield criterion can be
given for plane stress. Setting  in Eq. (1), squaring and
expanding the terms in brackets reveal that Eq. (1) defines an
elliptical yield locus: 
(Fig. 5A).The cell wall yields for stress combinations that fall on or
outside the yield locus. The yield locus can be interpreted as the
limit where the distortional elastic energy stored in the cell wall is
such that any further increase therein leads to irreversible defor-
mation.

Flow rule The flow rule specifies how the strain rate should be
partitioned among the principal directions when the yield criterion
is met. As stated in Bingham’s equation, strain rate is expected to
be proportional to the amount of stress in excess of the yield
stress. For multiaxial stress, Prager (1937) defined this excess
stress as the difference between the effective stress and the
global yield stress, i.e., . Flow should therefore be propor-
tional to this excess stress. However, we face the additional
complication of partitioning this flow between the three principal
directions. Intuitively, one might expect that the flow will be such
that it maximizes the dissipation of the distortional elastic energy
stored in the cell wall. In other words, the relative distribution of

Fig. 4. Geometry of tip-growing cells. (A) Dome of a tip-growing cell
showing a typical shell element (cross-hatched region) and the principal
directions corresponding to the surface normal, the meridians and the
parallels of the dome. (B) Principal stress ( ) and strain rates ( ) acting on
a shell element. The stress acting normal to the cell surface ( ) is
negligible compared to the stresses acting in the plane of the cell wall. (C)

Geometry of a doubly-curved surface. The two principal curvatures at a
point are illustrated as circles tangent to the surface. One circle, in face
view, shows the first radius of curvature ( ); a second circle, in
oblique view, shows the second radius of curvature ( ).  is the
radial distance from the axis of the cell and  is the angle between the
normal to the surface and the axis of the cell.
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flow between the three principal directions will be proportional to
the contribution of each of these directions to the stored energy.
Let  represent the stored distortional elastic energy. In
the theory of plasticity,  is called the flow potential (Hill, 1950).
The direction of greatest dissipation is given by the vector

, where  is a unit vec-
tor in the  direction. The components of  indicate how the flow
should be partitioned between the principal directions. Since we
are looking only for fractional coefficients to multiply the excess
stress, this vector should be first normalized by dividing by its
length . Graphically, the gradient
of the flow potential defines vectors perpendicular to the yield
locus (Fig. 5).

If, as indicated above, the strain rate in each of the directions
,  and  is proportional to  and strain is partitioned

among these directions in proportion to their contribution to stored
distortional elastic energy, then we can write the following basic
constitutive equation:

(3)

where the coefficient  is the cell wall extensibility (the reciprocal
of viscosity). Equation (3) is the constitutive equation adopted by
Prager (1937) for a viscoplastic material under multiaxial stress.
Its similarity with Bingham’s equation is obvious. By differentiating

, we can write the strain rate ratios explicitly in terms of stresses
and mechanical properties:

(4)

where

 

and  was set to zero (plane stress) after taking the derivatives.
From Eq. (4) and keeping in mind Eq. (2), we see that a relatively
high stress or low yield stress in a given direction will give a
relatively high strain rate in that direction. Substituting Eq. (4) into
Eq. (3), we get constitutive equations for a general anisotropic
material under plane stress. Note that in Eq. (3) the sum of the
strain rates is zero as can be seen by adding the three directional
terms of Eq. (4). This indicates that the volume of the deforming
cell wall is constant. On the other hand, the absolute rate of
deformation, , is equal to . Thus our model,
like Bingham’s equation, has an absolute rate of deformation that
is a linear function of the applied stress.

If we now assume that the material is transversely isotropic
 and use the above definition for the global yield

stress, we find . Substituting

in Eq. (2), we get  and .
The role played by the parameter  in the viscoplastic equations

is analogous to that of the Poisson’s ratio ( ) in linear elasticity.
We emphasize this similarity by substituting the symbol  in place
of  and calling this new parameter the flow coupling. The flow
coupling  is a dimensionless mechanical property affecting the
distribution of strain between the principal directions. For most
materials,  ranges between 0 and 1.

Expanding Eq. (3) for plane stress and transverse isotropy, we
obtain the following set of constitutive equations for the cell wall:

Fig. 5. Yield locus for a viscoplastic material. (A) Yield locus and flow

field for an anisotropic material ( ). The wall flows
irreversibly for stress combinations that fall on or outside the yield locus.
Arrows indicate the direction of flow. (B) Three possible yield loci for a
transversely isotropic material. The loci corresponding to   and

 represent two extreme cases. The locus  is achieved

if . A possible flow field associated with this yield
locus is superposed on the region of likely stress combinations for a tip-
growing cell (shaded area).
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(5)

where,  and
. Note that for  the strain rates are zero.

The normal strain rate ( ) will in general be negative since by
definition . The third equation thus gives the thinning of the
wall that would occur due to stretching if new wall material were
not being concomitantly deposited to maintain wall thickness. It
should also be emphasized that all variables in Eq. (5), including
the mechanical properties— ,  and , are functions of the
meridional position ( ).

Kinematic relations
Kinematic relations for axisymmetric shells are well known and

were discussed in the context of plant cell morphogenesis in
several papers (Hejnowicz and Sievers, 1971; da Riva Ricci and
Kendrick, 1972; Hart and Trainor, 1989; Pelcé and Pocheau,
1992; and others). Consider the displacement of any material
point on the surface of a growing tip. As the cell elongates, the
material point will be displaced along a curved trajectory until it
becomes part of the non-growing region of the cell (Fig. 6). Our
equations are based on the velocity vector ( ) of such material
points. The velocity vector can be decomposed into components
normal ( ) and tangential ( ) to the cell surface. The meridional
and circumferential strain rates are defined in terms of the velocity
components as follows (see Appendix A):

(6)

(7)

In these equations, the strain rates ( , ) are related to the
displacement velocities of the cell surface ( , ) using param-
eters that describe the local surface geometry, namely, the
curvatures (  and , the reciprocals of the respective radii of
curvature), the angle between the normal to the surface and the
cell axis ( ), the cross-sectional radius ( ) and the meridional
distance ( ) (Fig. 4). Here, the normal strain rate ( ) is equal to the
thinning due to expansion in the plane (as in Eq. (5)) combined
with the relative rate of thickening due to deposition of new wall
material:

(8)

where  denotes the rate of wall deposition per unit surface area
and  is the wall thickness. According to assumption ii), the rate
of wall thinning due to in-plane expansion is matched exactly by

deposition of new wall material. We therefore set  equal to zero.

Equilibrium equations
Since the wall of a growing cell yields slowly (small accelera-

tions), we can assume that the forces acting on it are in equilib-
rium. For an axisymmetric tip, the meridional and circumferential

Fig. 6. Material point trajectories during steady-state growth. For
simulations of tip growth, the cell meridian is discretized into  points 
to . The point denoting the equator ( ) is moved forward in steps to
follow the advance of the tip.

stresses can be expressed directly as functions of pressure ( )
and the local geometry of the cell surface (see Appendix B):

(9)

(10)

The meridional and circumferential stresses are identical when
. This is the case at the pole of the cell where  and 

converge to the same value. In the cylindrical portion of the cell
where  is zero, the circumferential stress is twice the meridional
stress. The ratio of stresses thus changes substantially along the
cell meridian due to change in local curvature.

Steady-state analysis

As illustrated in Fig. 2, the three fundamental relations that
describe cell morphogenesis constitute a feedback loop. There-
fore, it is not a priori easy to predict cell shape from wall mechani-
cal properties or other parameters that might be under cellular
control. We can gain some insight into this system of equations by
considering the relation between wall mechanical properties and
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cell geometry at steady state and making use of some basic
assumptions about the deformation process. One interesting
choice for deformation is to assume that the displacement of
material points is always perpendicular to the cell surface.

To show the type of solutions that can be achieved under the
assumption made above, we must first define two ratios: the strain
rate anisotropy  and stress anisotropy

. Substituting these ratios in Eq. (5)
and rearranging, we obtain to the following relation:

(11)

This important relation can be interpreted as an alternative
definition for the flow coupling. Equation (11) illustrates an inter-
esting parallel between viscoplasticity and linear elasticity since
the same relation can be obtained for the Poisson’s ratio as a
function of the elastic strain anisotropy and the stress anisotropy.
If the material is loaded in uniaxial stress,  is equal either 1 or -
1 and Eq. (11) reduces to  or , the classical
definition of the Poisson’s ratio (Love, 1944).
Having derived Eq. (11), we can now return to the issue of finding
analytical solutions under the assumption that the displacement
of material points is perpendicular to the cell surface. Setting

 in Eqs. (6) and (7), we find that ).
Moreover, substitution of Eqs. (9) and (10) into the relation for the
stress anisotropy yields . Substituting
for  and  in Eq. (11) and rearranging, we obtain:

(12)

We have therefore been able to express cell geometry (given here
by  and ) directly in terms of one mechanical property (the flow
coupling ). Equation (12) must satisfy three conditions in order
to yield realistic tip shapes. At the pole ( ) the two curvatures
must be equal thus . At the equator ( ), slope
continuity between the dome and the cylindrical part of the cell
requires that  or equivalently . Finally,
to ensure continuity of curvature at the same location, 
must be imposed so that  as . A discontinuity in the
meridional curvature at the equator would lead to a stress discon-
tinuity. Such discontinuities are rapidly removed in physical sys-
tems that undergo large deformations and, for the same reason,
they are not likely to be present in walled cells.

Given a function , we look for a solution  that
satisfies both Eq. (12) and the boundary conditions. Note that
because the tip is axisymmetric,  can be expressed in terms of

 (see below). Solutions can be found iteratively by solving the
following three equations in succession:

(13)

Here,  is the meridional curvature after  iterations. We
begin with an initial hemispherical tip geometry ( ) with meridi-
onal arc length . Solving Eq. (13) for the initial guess, we find
a new tip geometry . If the geometry does not satisfy the
boundary conditions at the outer margin (i.e. if ) then
the curvature is rescaled appropriately while the arc length is kept
constant. After several iterations, this process converges to a tip
geometry that is compatible both with the function selected for the
flow coupling and with the boundary conditions. It must be
emphasized that  fixes the ratio of the two curvatures but not their

Fig. 7. Convergence to steady-state geometry. (A) Three tips with the
same mechanical properties but different initial shapes. The evolution of
the meridional curvature for tip 1 is given in (B) where the dashed line is
the curvature for the initial geometry. (C) After a sufficient number of
iterations, all tips converge to the predicted steady-state geometry. The
error was measured as the sum of the squared differences (SSD)
between the current curvature and the steady-state curvature derived
analytically.
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absolute value; it thus defines the shape of the tip but not its size.

Simulation of tip growth

The great value of the normal displacement assumption is that
it yields simple analytical solutions to an otherwise complicated
system of equations. The assumption, however, is an idealized
view of tip growth to which many exceptions are to be found.
Deviations from normal displacement, even if these are small, will
likely create conditions under which the flow coupling and other
mechanical properties will share the control of cell shape. To
study the general relation between wall mechanical properties
and cell shape we must resort to computer simulations.

Computational approach
In our formulation of the constitutive relations, the rates of

strain are determined by the current stress state and mechanical
properties so that we can simulate large deformation of the cell
surface as a series of small growth increments. The algorithm
implemented with Matlab (The MathWorks) is composed of the
following steps:

i) We first specify the initial tip geometry, turgor pressure and
a set of mechanical properties. The initial, axisymmetric geometry
of the tip is set by defining one of its meridians. The mechanical
properties can be constant through time or vary.

i i) The cell’s meridian is discretized with  points
 with  lying at the pole of the tip and  lying

at the equator (Fig. 6). The arc position of point  is denoted .
The local meridional curvature of the cell outline is determined by
fitting a circle to three successive points ( , , ). The
curvature at the middle point is the reciprocal of the circle’s radius
and is given by the equation: , where  is the
straight distance between  and  and  is the interior
angle between the vectors joining  to  and . Curvature
at  is extrapolated from the curvature at  and .

iii) Using the equilibrium equations (Eqs. (9),(10)), the stresses
are computed from the current geometry and values for turgor
pressure and wall thickness. Where the effective stress exceeds
the yield stress, the meridional and circumferential stresses can
be substituted in the constitutive equations (Eq. (5)) to get the
strain rates.

iv) To determine the displacement velocities (  and ) from
the strain rates, the kinematic relations must be inverted. Equa-
tions (6) and (7) can be combined and rearranged to give the
following partial differential equation for :

(14)

In this equation, all variables except  are known functions of the
meridional position, . The boundary condition is ,
where  is the meridional distance between the pole and the
equator. The equation can be integrated to give :

(15)

By substitution into Eq. (7), a similar equation is found for :

(16)

v) The velocity of every point on the meridian is given by Eqs.
(15) and (16). The new, deformed, geometry is determined by
finding the position of each point after a small time interval, .
This process ‘maps’ the material point trajectories (Fig. 6). During
a growth interval, some material points are displaced from the
growing dome to the non-growing cylinder. These points are
eliminated and replaced by new points within the growth region
such that the length of the growth region and its spatial resolution
are preserved. This is done by fitting the deformed meridian with
a cubic spline and remeshing between  and  with a uniform
spacing between points. Steps ii to v are repeated until a steady
state is reached.

The convergence of the algorithm to a steady-state solution
was checked against the analytical solutions derived in the
previous section. Tips of different initial geometry but with the
same arc length and mechanical properties were used (Fig. 7).
Despite important differences in the initial curvature, the tips
converged to the geometry that was analytically derived. These
simulations indicate that there is a unique geometry correspond-
ing to a given set of mechanical properties.

Fig. 8. Effect of wall extensibility  on the shape of the tip. In all cases
the flow coupling was  and the yield stress ( ) was constant
and set to 50% of the minimal effective stress ( ).
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Role of mechanical properties in determining cell shape
The role played by the mechanical properties in determining

cell shape was investigated numerically. For brevity, only varia-
tions in  and  will be considered here. Figures 8 and 9 show the
tip geometry and meridional curvature for different combinations
of  and . Inspection of these figures reveals that tips with
superficially similar geometries can nevertheless show substan-
tial differences in their meridional curvatures. A basic constraint
for the tip geometry is that the two flanks of the cell should be
parallel at the equator. In terms of the meridional curvature, this
geometrical constraint requires that the area under the curvature
plot be equal to . In other words, the total turning of the tip outline
must be  (180°). Different tip geometries correspond to different
distributions of the curvature. Prolate tips show high curvature
near the pole while oblate tips show relatively more curvature
away from the pole. The hemispherical tip geometry is an interme-
diate shape where curvature is constant along the meridian (Fig.
8C).

The trend in Fig. 8 shows that a gradual shift of the extensibility
away from the pole leads to a similar shift of the meridional
curvature. In Fig. 9, raising the value of  when it is constant along
the meridian tends to make the distribution of curvature more
uniform although the tip geometry is not very sensitive to such
changes (Fig. 9A-C). On the other hand, if  is graded then the
effect is more pronounced. A gradual increase of  from the pole

to the equator favors a high curvature at the pole while a gradual
decrease of  favors a shift of curvature toward the equator (Fig.
9D and E). We conclude that similar gradients of  and  have
opposite effects on the meridional curvature.

Non-steady growth of cells
Many phases of cell growth are not steady. In fact, one could

argue that growth transients represent some of the most impor-
tant events in morphogenesis. Examples include the initiation of
tip growth from spherical spores or pollen grains and the formation
of sporangia at the extremity of fungal hyphae. Given the signifi-
cance of these morphogenetic events, it would be valuable to be
able to model them. The simulation approach described above
lends itself to this sort of problems.

Initiation of tip growth from roughly spherical or cylindrical cells
is a common feature of pollen grains, fungal spores, trichoblasts
and many algae, including the much-studied Fucus egg. This
morphogenetic transition can be modeled by initiating tip growth
on a sphere (Fig. 10A) without requiring any other change to the
protocol already outlined. The reverse process of creating a
spherical structure atop a long cylindrical cell is observed during
the morphogenesis of the Phycomyces sporangiophore (Castle,
1942). The striking transition from tip growth to the formation of
the spherical sporangium was simulated (Fig. 10B) by stopping
the advance of the tip boundary (step v in the protocol) but leaving
the mechanical properties unchanged. As a result, the tip starts to

Fig. 9. Effect of flow coupling  on the shape of the tip. In all cases
the extensibility was  and the yield stress ( ) was
constant and set to 50% of the minimal effective stress ( ).

Fig. 10. Non-steady morphogenesis of cells. (A) Initiation of tip growth
as in the Fucus egg. (B) Sporangium formation in Phycomyces. (C) Tip
flattening as in the first phase of whorl initiation in Acetabularia. (D)

Pulsatile growth in a tip-growing cell. Latitutinal lines show the fluctua-
tions in the rate of advance of the tip. (E) Beaded shape in a tip-growing
cell resulting from temporal fluctuations in the pattern of wall expansion.
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increase in size and adopts a spherical shape.
In Acetabularia and other Dasycladalean algae, tip growth

alternates with the formation of whorls of hairs. The first event in
this transition is a characteristic flattening of the tip (Dumais and
Harrison, 2000). Here the transition (Fig. 10C) was modeled by
shifting the pattern of wall extensibility from one with a maximum
at the pole to one with a maximum on the flank of the cell, as in Fig.
8A and Fig. 8E, respectively. Numerous investigators have also
reported fluctuations in the elongation rate of tip-growing cells
(Holdaway-Clarke et al., 1997). In some instances the tip geom-
etry remains unchanged but shows periodic bursts of growth (Fig.
10D) while in others, the tip geometry changes cyclically resulting
in a beaded appearance of the cell shaft (Fig. 10E). The former
mode of morphogenesis was simulated by rescaling a given wall
extensibility profile over time and the latter mode was simulated
by alternating between two distinct extensibility profiles.

Examples of most of the kinds of morphogenesis illustrated in
Fig. 10 can be found both in normal fungal hyphal and conidial
growth and, in exaggerated form, in fungal morphogenetic mu-

tants (Springer and Yanofsky, 1989; Seiler and Plamann, 2003).
Some of these mutants’ effects are attributed to alterations of
cytoskeletal or motor proteins (Xiang and Plamann, 2003). Pre-
sumably these morphogenetic effects result from modifications in
either the rate, or the localization, of delivery to the apical dome’s
cell wall, of secreted agents (proteins, polysaccharides, Ca2+,
etc.) that influence the mechanical properties of the wall.

Anisotropy space

Figures 8, 9 and 10 show the range of shapes that can be
achieved with a model that allows for spatial and temporal
variations of mechanical properties. However, the geometries
computed can be generated by a wide range of models (see for
example Bartnicki-Garcia et al., 1989; and Goriely and Tabor,
2003) including models that assume an isotropic cell wall. One
may therefore ask whether the inclusion of mechanical anisotropy
in our model and the complications that follow are really neces-
sary. The need for such a model is obvious if one considers the
actual strain rates and stresses involved in cell morphogenesis.
To show the importance of anisotropy, we rewrite Eq. 11 so that
the strain rate anisotropy and the stress anisotropy are present
only once:

(17)

We now consider in general terms how the mechanical
anisotropy - embodied by the flow coupling - can constrain the
strain rates and stresses. For an isotropic material ( ),
Eq. (17) gives . Measured strain and stress anisotropies
must therefore fall on a line of slope three for an isotropic
material (Fig. 11). For a transversely isotropic material, the flow
coupling can take values from the interval . Substitution of
the lower bound  and upper bound  in Eq. (17) leads
to the following inequalities:  if ,  if  and

 if  (Fig. 11). Finally, for a fully anisotropic cell wall we
must return to the general form of Eq. (5) and perform the same
rearrangements that yielded Eq. (17). When this is done, it is
found that strain anisotropy is not restricted by  as given in Eq.

Fig. 11. Anisotropy space. Isotropic, transversely isotropic and anisotro-
pic models span different subsets of that space. Models with isotropic
mechanical properties are limited to a line passing through the origin (thin
solid line). Models with transversely isotropic mechanical properties
cover the shaded area in the anisotropy space. Finally, models with
anisotropic mechanical properties extend to the whole space. Observed
anisotropies for two tip-growing cells ( Medicago truncatula root hair and
the Chara rhizoid) and two diffusely-growing cells ( Nitella and Hydrodictyon)
are shown. The approximate location where the strain rate and stress
anisotropies were recorded are shown for M. truncatula (inset). For
diffusively-growing cells such as Nitella and Hydrodictyon, wall expan-
sion is relatively constant along the length of the cell. Therefore, only
mean values are shown. A value of strain rate anisotropy above the
horizontal dotted line indicates that the meridional strain rate is negative
(contraction). The stress anisotropy for a tip-growing cell is expected to
reach a maximum of 1/3 (vertical dotted line) at the equator of the dome.
Sources for the cell data used in this graph are given in the text.

Fig. 12. Derivation of the kinematic relations. See Appendix A for
details.
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(17). In particular,  can differ from zero even when .
It is clear that the pattern of wall expansion is highly con-

strained for an isotropic material and less so for a material that
is only transversely isotropic. We can ask whether observed
patterns of strain rates in plant cells are such that they could be
produced in a cell wall with isotropic mechanical properties. We
have included in Fig. 11 the strain rate and stress anisotropies
recorded for two tip-growing cells (root hair of Medicago
truncatula, data from Dumais et al., 2004; the Chara rhizoid,
data from Hejnowicz et al., 1977) and two diffusely-growing
cells (the Nitella internodal cell and Hydrodictyon; data from
Green, 1963). Nitella and Hydrodictyon lie clearly outside the
range of strain and stress patterns accessible to an isotropic or
transversely isotropic model. To be completely explained, mor-
phogenesis in these cells thus requires fully anisotropic me-
chanical properties. Observations have demonstrated that in-
deed the cell wall of Nitella is highly anisotropic (Probine and
Preston, 1962; Green, 1963). The strain rates and stresses
observed in Medicago root hairs and the Chara rhizoid are
distinct from those of diffusely-growing cells. For most of their
ranges, the strain rate and stress anisotropies lie within the
subspace accessible to a transversely isotropic model. The
deviation near the origin suggests that a transversely isotropic
model may not do full justice to tip growth. We have provided
evidence elsewhere (Dumais et al., 2004) for a slight mechani-
cal anisotropy in the plane of the cell wall although a simpler
transversely isotropic cell wall can also account for the main
features of tip growth, at least in root hairs of Medicago truncatula.
The above observations show clearly that a fully isotropic cell
wall cannot account for observed patterns of wall expansion in
tip-growing cells and even less so in diffusely-growing cells.

Conclusion

We have presented a model for plant cell morphogenesis that
offers a first attempt at integrating the mechanics of wall deforma-
tion with specific features of wall assembly. We provided a
protocol to solve this model numerically and showed how it can be
used to simulate different modes of morphogenesis (Fig. 10). As
indicated in Fig. 2, the kernel of our model is a feedback loop
linking wall turgor stresses, wall strain rates and cell geometry
(see also Hejnowicz et al., 1977). According to this diagram, there
is not a simple causal sequence linking the genes and cell shape.
Although gene products and other regulatory molecules directly
influence the mechanics of cell expansion, one cannot easily
pinpoint their specific contributions to cell shape. This observation
calls attention to the need to develop adequate models of cell
morphogenesis concomitantly with traditional experimental ap-
proaches. In fact, our ability to simulate morphogenesis can play
a critical role in supporting or extending our intuitions about the
molecular and mechanical control of cell shape.

The model developed in this paper is based on the premise that
plant cells control morphogenesis by modulating the viscoplastic
properties of their wall. We give here an analysis of wall strains
and stresses reported in the literature, which indicates that some
anisotropy must be built into models to account for observed
patterns of wall expansion (Fig. 11). We have tackled this problem
by taking into account the mechanical anisotropy that can arise
from different organizations of cellulose microfibrils in the cell
wall. However, various other molecules such as expansins
(McQueen-Mason and Cosgrove, 1995; Cosgrove, 2000),
xyloglucan endotransglycosylase (Antosiewicz et al., 1997;
Campbell and Braam, 1999), xyloglucan hydrolase (Kaku et al.,
2002) and yieldins (Okamoto-Nakazato et al., 2000a,b) are also
known to alter the wall mechanical properties although the physi-
cal directionality of the effects has not been determined. To be
biophysically persuasive, the action of the wall-modifying mol-
ecules, as well as any model of wall expansion that is based on
biosynthetic addition of new material (Bartnicki-Garcia et al.,
1989; Gierz and Bartnicki-Garcia, 2001), must include features
that affect the directionality of cell wall yield in a manner that
brings about the morphogenesis that is observable during cell
growth. We hope that this work, by offering an explicit biophysical
model of tip-growth morphogenesis, will provide a useful starting
point for addressing these issues.
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research fellowship from Prof. L. Mahadevan (University of Cam-
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Our derivation of the kinematic relations follows the standard
engineering derivation (Kelkar and Sewell, 1987; Ugural, 1999).
In the derivation that follows the deformation of the surface is
assumed to be infinitesimal. Consider a small meridional element
(Fig. 12). The segment length ( ) is given by its radius of
curvature ( ) times the arc angle ( ) defined by the segment.
After a small time interval , the segment is displaced in the
tangential and normal directions by  and , respectively. The
deformation of the segment may be regarded as composed of an
increase in length , owing to the gradient in tangential
displacement and an increase in length  resulting from the
radial displacement (Figure 12B,C). Dividing by the initial length
of the segment , we obtain the relative meridional
extension (meridional strain):

(A.1)

where the relation  was used. The circumfer-
ential strain is equal to the increase in circumference

 divided by the initial circumference 

Appendix A

Derivation of kinematic relations

(Fig. 12A):

(A.2)

The strain rates ( ) are obtained from Eqs. (A.1), (A.2) by noting
that for a short time interval , the displacements  and  equal

 and  respectively, where  and  are displacement
velocities. Equations (A.1) and (A.2) become:

(A.3)

(A.4)

A partial derivative is used to emphasize that the velocity of
material points depends not only on their meridional position ( )
but can also depend on time in non-steady morphogenetic phe-
nomena like those shown in Fig. 10.

Appendix B

Derivation of equilibrium equations

Derivation of the equilibrium equations is done in terms of forces
and stress resultants (Kelkar and Sewell, 1987; Ugural, 1999). A
stress resultant is a force distributed over a length and corre-
sponds to the stress integrated through the cell wall thickness. For
an axisymmetric cell geometry loaded with turgor pressure ( )
two stress resultants,  and , need to be considered. The
forces represented by the stress resultants and turgor pressure
must be in equilibrium in all directions. Starting with the direction
normal to the cell surface, the force exerted by turgor pressure is
equal to  where  is the area of the shell
element (Fig. 13A). The forces acting on the upper and lower

edges are equal to  (neglecting higher order terms). The
component of the meridional force acting in the normal direction
is equal to  which, owing to the fact that  is
small, can be approximated as  (Fig. 13C). Similarly, the
forces acting on the side edges are equal to . The compo-
nent of the circumferential force pointing in the radial direction is

 (Fig. 13B). Finally, the component of that force acting
normal to the cell surface is:

, where  is the
angle between the normal to the surface and the radial direction
(Fig. 13D).
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Equilibrium in the normal direction requires that:

(B.1)

dividing by the area  and using the identity 
(see Fig. 4) we get:

(B.2)

Next we determine the force equilibrium in the axial direction for
a section of the cell intercepted by an angle  (Fig. 13D). The axial
force exerted by turgor pressure is equal to  while the axial
force due to the meridional stress resultant is equal to .
Equilibrium requires that these two forces are of the same
magnitude. Rearranging for , the axial equilibrium equation is:

(B.3)

Substituting Eq. (B.3) into Eq. (B.2) gives the following expression
for :

(B.4)

The meridional and circumferential stresses are obtained by
dividing Eqs. (B.3) and (B.4) by the wall thickness ( ):

(B.5)

(B.6)


